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1 Introduction

This report summarises the work done in AOARD project 094160, Formal
System Verification for Trustworthy Embedded Systems. We begin by revis-
iting the original motivation and work plan, continue with a brief high-level
summary of the project outcomes and end with two publications [1, 2] that
describe the outcomes in depth. We also attach two further papers, that
were not directly funded by this project, but that give the necessary back-
ground definitions for this work [3, 4].

2 Motivation and work plan

The larger research topic was that of trustworthy embedded systems, in
particular the formal verification of large, massively complex embedded sys-
tems. Our larger research vision is building provably secure systems on top
of a formally verified microkernel basis. We had previously achieved code-
level formal verification of the seL4 microkernel [3]. In the present project,
over 12 months with 0.6 FTE, we concentrated on a verification framework
that allows us to combine proofs from different levels of abstraction into one
final, verifiable formal statement (e.g. combining MILS-style security archi-
tectures, component specifications, component code proofs, and OS kernel
code proofs into a statement about access control in the overall system).

The large, 4-year research challenge is to integrate a number of differing
formal analyses into one framework such that the overall effort for verifica-
tion of the whole system is reduced to the following partial proofs: an au-
tomatic security analysis on an abstract system model, manual code proofs
for a small number of component implementations, automatically generated
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glue code, and the previously formally verified microkernel. The framework
will have to be general enough to encompass the different formalisms used
in the different source proofs, but specific enough to make its application
either low-effort or largely automatic.

The purpose of present project was to start the initial phase of this larger
vision with a small case study, formalising an existing design that we can
use to develop the full framework.

The work plan of the project had the following milestones.

• Formal architecture specification: The planned outcome of this
milestone is an abstract, high-level formalisation of the case study
design. The main intention of this formalisation is to capture which
components exist in the system and how they are connected in terms
of communication channels. The idea is that this formalisation will
serve as an instance of a high-level security architecture specification
to be connected to lower abstraction levels in the following milestones
and that it is constructed with a view to be useful for a formal security
analysis.

• Formal component behaviour specification. The planned out-
come of this milestone is a formal behaviour specification of one or
more trusted components in the case study system. The specification
will assume communication primitives implemented either directly by
microkernel calls or by generated communication stubs. The formali-
sation and verification of the implementation of these communication
primitives is not part of this milestone (it is a later part of the larger
project).

• Formal system semantics. The planned outcome of this milestone
is a behaviour description for the whole system. The idea is to give
a semantics for concurrently executing components that connects the
previously constructed single component behaviour specifications with
the architecture specification from the first milestone and pulls them
together into a behaviour description of the whole system.

• Formal analysis. The planned outcome of this milestone is an in-
vestigation of how a simplified security analysis of the architecture
specification (such as a simple connectedness analysis) can be mapped
to the full formal behaviour specification of the system of the pre-
vious milestone. The main question to be answered is: which proof
obligations need to be solved for the analysis of just the architecture
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to be meaningful for the next level down? Depending on the analysis,
these obligations should be much simpler than a full formal refinement
proof.

The main outcome we were aiming for in this one year was an initial frame-
work prototype based on a small case study with support for describing a
system on the abstract security architecture level, allowing the formal speci-
fication of concurrent behaviour of system components. The framework will
not necessarily allow a connection to an existing microkernel proof yet or
automatically generated configuration and glue code. The latter two are to
be developed in later stages of the project.

3 Outcomes

The milestones in the previous section have all been achieved.
In a previous project, we designed and implemented a secure network

access device (SAC) on top of the verified seL4 microkernel. The device
allows a trusted front-end terminal to securely connect to separate back-end
networks of different classification levels. On a switch request from the user
via a web interface, the access device will connect the front-end terminal
to the requested back-end network, one at a time. The security goal of
the device is to prevent any information flows between back-end networks
through the device.

For milestone 1, we have adapted and further developed a fully formal,
high-level architecture specification of this SAC device. For milestone 2,
we have formally described the behaviour of the so-called Router Manager
component, the only trusted component in this system. For milestone 3,
we have defined a high-level interleaving semantics for the execution of the
whole system, including the kernel. For milestone 4, we have developed a
formal security proof of the SAC that examines all possible executions of
the high-level system.

All formalisations and proofs in this project have been conducted, and
machine-checked in the theorem prover Isabelle/HOL. The security proof
has additionally been modelled and checked in the the SPIN model checker.

The final deliverable of the project was a technical report or publication
on the framework prototype described above. We have published two papers
on the project. The first publication describes the formalisation and security
proof in detail [1]. The second publication is an invited submission for the
keynote presentation at the Asian Symposium of Programming Languages
and Systems in 2010 [2]. It gives a detailed overview of the results, places
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them into the larger context, and outlines the work that still needs to be
done to achieve an overall system security theorem.
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Abstract

This paper proposes a generalized framework to build
large, complex systems where security guarantees can
be given for the overall system’s implementation. The
work builds on the formally proven correct seL4 micro-
kernel and on its fine-grained access control. This access
control mechanism allows large untrusted components to
be isolated in a way that prevents them from violating a
defined security property, leaving only the trusted com-
ponents to be formally verified. The first steps of the
approach are illustrated by the formalisation of a multi-
level secure access device and a proof in Isabelle/HOL
that information cannot flow from one back-end network
to another.

1 Introduction

Advances in machine-assisted theorem proving, and for-
mal methods techniques in general, have pushed the lim-
its of software verification to the point where it is pos-
sible to prove properties of real-world applications. The
recently verified seL4 microkernel is one such example.
Its 7500 lines of C code were formally proved to cor-
rectly implement a high-level abstract specification of its
behaviour [7].

Formally verifying programs with sizes approaching
10 000 lines of code is a significant improvement in what
formal methods was previously able to verify with rea-
sonable effort. However, 10 000 lines of code is still
a significant limit on the application of formal meth-
ods to the verification of contemporary software systems.
Modern software systems, beyond very simple embed-
ded systems, frequently consist of millions of lines of
code. Thus the challenge remains as to how formal as-
surance can be given to real-world software systems of
such size.

This paper presents our vision for how specifically tar-

geted properties can be provably assured in very large
and complex software systems. Our vision comes from
the observation [1] that not all software in a large sys-
tem necessarily contributes to a property of interest. For
example, a game installed on a smartphone contributes
nothing to the ability to make reliable phone calls. If one
can assure the game is isolated from the phone call soft-
ware, one can focus verification effort on the phone call
software to assure reliability of calls.

The vision is to develop methodologies and tools that
enable developers to systematically (i) isolate the soft-
ware parts that are not critical to a targeted property, and
prove that nothing more needs to be verified about them
for the specific property; and (ii) formally prove that the
remaining critical parts satisfy the targeted property. The
key aspect of the vision is the system-level specification
of the property of interest, and the incorporation of all
critical code in an overall proof, including the kernel.
A challenge will be to keep the security-critical parts or
trusted computing base (TCB) as small and simple as
possible to ensure that its verification remains tractable.

Our vision builds on, and is enabled by, the formal
verification of the seL4 microkernel. Microkernel-based
systems already componentise software into smaller, iso-
lated, components for security, safety, or reliability.
SeL4’s verification will eventually enable provable isola-
tion guarantees by providing correct kernel mechanisms
for managing the hardware platform’s memory protec-
tion mechanisms.

The remainder of the paper presents our first steps to-
wards realising our vision for large, secure systems on
seL4. We use a concrete case study of a secure access
controller (SAC) as a representative example of a large
complex system with a specific property requirement.
Section 2 describes the SAC in more detail. Section 3
briefly overviews seL4, and presents a SAC design (and
rationale) that is architected to minimise the TCB. Sec-
tion 4 describes how to formally verify security prop-



Figure 1: The SAC routes between a user’s terminal and
1 of n classified networks.

erties on that architecture such that the properties still
hold at the implementation level, and includes the for-
malisation of the information flow property targeted for
the SAC and its proof using Isabelle/HOL. Finally, Sec-
tion 5 looks at related work, while Section 6 concludes.

2 Case study overview

To illustrate some of the difficulties present in verifying
large systems, we introduce a case study of a simple SAC
device. In this scenario, a single user requires access to
several independent networks of different security clas-
sifications. The user has a simple terminal connected to
a network interface of the SAC. The SAC has additional
network interfaces allowing it to be connected to each of
the classified networks. The user only needs to access
one network at a time, and selects the network through a
web interface provided by the SAC on a control network
interface. This setup is depicted in Figure 1.

The goal of the SAC is to route TCP/IP packets be-
tween the user’s terminal and the currently selected net-
work without allowing the information to be seen or ma-
nipulated by the other networks. The SAC must ensure
that all data from one network is isolated from each of the
other networks. While we assume that the user’s termi-
nal is trusted to not leak previously received information
back to another network, we otherwise assume that all
networks connected to the SAC are malicious and will
collude.

Concrete applications of such a device can be found in
the defence sector, where users frequently need to deal
with data of several classifications, each of which is iso-
lated on its own network. The traditional approach of
having one terminal per classification level for each user,
while clearly obeying the security requirements, is rather
unwieldy.

While the requirements of the SAC are quite simple,
it already presents several challenges to full system ver-
ification. In particular, the SAC requires code for (i) gi-
gabit network card drivers; (ii) a secure web server; (iii)
a TCP/IP stack for the web server; and (iv) IP routing
code. Any one of these components would individually

consist of tens of thousands of lines of non-trivial code
that would give even the most seasoned verification en-
gineer pause. Complicating matters further, each of the
classified networks needs to both read and write data to
the user’s terminal at some point in time. Traditional data
diodes or any security design that relies on statically par-
titioning resources would be incapable of providing the
required functionality of the SAC. Despite these compli-
cations, our goal is to provide the required functionality
while having a full system assurance that the data from
the networks will remain isolated.

3 Designing for the Vision

For our case study, our property of interest is an access-
control-based security property. Verifying such a prop-
erty for the large body of code needed to implement the
functionality required by the SAC is far beyond the abil-
ities of current verification methods.

To overcome this we split the code of a large system
into two classes: trusted code, implementing security-
critical functionality, and untrusted code which we as-
sume is malicious, avoiding the need to reason about its
precise implementation. For such a split to be possi-
ble, we need some mechanism that allows such untrusted
code to be securely isolated.

Our work uses the seL4 microkernel to provide such
isolation. SeL4 is a small operating system kernel of
the L4 family designed to be a secure, safe, and re-
liable foundation for a wide variety of application do-
mains [11]. Its C implementation has been formally
proved to match its functional specification [7], making
it a key foundation of our goal for full system assur-
ance. As a microkernel, it provides a minimal number of
services to applications: abstractions for virtual address
spaces, threads and inter-process communication (IPC).

SeL4 uses a capability-based access-control model.
All memory, devices, and microkernel-provided services
require an associated capability (access right) to utilise
them [3]. The set of capabilities a component possesses
determines what a component can directly access. SeL4
enforces this access control using the hardware’s mem-
ory management unit (MMU). Additionally, seL4 allows
device drivers to be isolated by using the I/O MMU
functionality present on recent x86 processors. The I/O
MMU allows the kernel to control what areas of physi-
cal memory each hardware device can access via direct
memory access (DMA), preventing malicious hardware
devices (or, more specifically, malicious software con-
trolling such hardware devices) from bypassing seL4’s
access control mechanisms.

The access control mechanism of seL4 allows systems
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Figure 2: High-level component breakdown of the SAC
design. The router manager is the only trusted compo-
nent in the system, as no other component has simulta-
neous access to both NIC-A and NIC-B.

to be broken into smaller independent components, each
with its own set of access rights. This split of com-
ponents forms the system’s high-level security architec-
ture. The set of capabilities we provide to each com-
ponent forms the system’s capability distribution which
precisely defines overt communication amongst compo-
nents and hardware, and thus can be used as the basis
of a security analysis of the system. Covert communica-
tion channels, such as timing channels, would have to be
analysed by other means.

Components that do not possess any capabilities that
may be used to violate the system’s security policy need
not be trusted, and can be implemented without requiring
verification. Components that do have sufficient capabil-
ities to violate the system security policy become part of
the TCB (along with the seL4 kernel itself), and require
verification. For example, in our SAC case study, any
component that possesses a capability to a network card
connected to a classified network while simultaneously
having access to information from another classified net-
work would need to be trusted, and hence verified.

In our experience, designing a secure system is an it-
erative process: (i) a high-level security architecture is
proposed, coarsely breaking the system down into com-
ponents; (ii) a capability distribution is determined by
applying the principle of least privilege for the design
[10]; and (iii) this capability distribution is analysed to
determine which components have sufficient rights to vi-
olate the desired security policy (hence becoming part of
the system’s TCB). The resulting design may be further
refined via re-iterating to reduce the size of the TCB, and
thus ease verification effort.

We return to the case study to illustrate how this de-
sign process applies to the SAC. For simplicity of expla-
nation, we assume that the SAC only needs to multiplex
two classified networks, NIC-A and NIC-B. The user’s
terminal is connected to NIC-D, while the SAC is con-
trolled through a web interface provided on NIC-C.

To avoid trusting (and thus verifying) large bodies of
code such as network stacks, we architect the system
with an untrusted router component. This component
is given access to NIC-D and either NIC-A or NIC-B,
and is responsible for routing between the two networks.
The component has two additional parts: read-only ac-
cess to its own initialisation code and additional read-
write memory required by it at run-time.

A second trusted component, the router manager, pos-
sesses capabilities to all three of NIC-A, NIC-B and NIC-
D. When the SAC needs to switch between networks, the
router manager first deletes any running router compo-
nent, clears the router’s read-write memory, and sanitises
the hardware registers and buffers of NIC-D (to prevent
any residual information from inadvertently being stored
in it). Such sanitisation requires a detailed knowledge
of the the network card hardware (to ensure that all po-
tential storage channels are cleared), but is expected to
be significantly simpler than an implementation of a full
driver for the card. The router manager will then recreate
the router, grant it access to its read-only code and read-
write memory, and grant it access to NIC-D and either
NIC-A or NIC-B as required. This allows the router to
switch between NIC-A and NIC-B without being capable
of leaking data between the two.

A third untrusted component, the SAC controller, pro-
vides a web interface to the control network on NIC-C.
The router manager is given a read-only communication
channel to the SAC controller, which is used to instruct
the router manager to restart the router with rights to the
other classified network.

Finally, to avoid components sharing the system’s tim-
ing hardware (thus creating a communications channel
between them), a fourth untrusted timer server com-
ponent is granted access to the system clock and pro-
vided with a write-only communication channel to each
of the other components. It broadcasts a regular timer
tick to the other components, allowing each to internally
track time, required by modern network card drivers and
TCP/IP implementations.

This design, shown in Figure 2, only requires the
router manager to ever have access to both NIC-A and
NIC-B simultaneously. While this means that the router
manager component becomes part of the system’s TCB,
it allows us to leave all other components in the system
untrusted, significantly easing the burden of verification.

Our implementation of this design uses GNU/Linux
to implement the router and SAC controller components.
The SAC controller’s webserver is implemented using
‘mini httpd’, while the Linux kernel itself provides
functionality for routing, the TCP/IP networking stack
and drivers for the network cards. The Linux kernel
alone consists of millions of lines of code, much of which
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would become part of the TCB if used directly. By utilis-
ing the access control features of seL4 and designing the
system to isolate this functionality, we were able to re-
duce the run-time TCB of the SAC to just the router man-
ager (approximately 1500 lines of code) and the seL4
kernel (approximately 7500 lines of code), just under
9000 lines in total.

4 Formal verification of security properties

While the previous section described informally how a
secure system such as the SAC might be designed to re-
duce the size of its TCB, this alone does not provide any
guarantees about our desired security property. This sec-
tion describes a process that allows us to formally prove
that the final system implementation obeys the property,
and describes our progress on this vision by describing
the first few steps of the proof on our SAC case study.

As in seL4’s correctness proof, we focus on verifica-
tion of the initialized C code, assuming the correctness of
hardware, compiler, assembly and booter (the two latest
being on-going work).

This verification approach is illustrated in Figure 3.
Once a system has been broken into components with an
initial capability distribution defined (labelled ¬ in the
figure) and trusted components in the system have been
identified (labelled  in the figure), we must then:

1. Prove that this partition is sound. That is, we must
prove that untrusted components are incapable of
violating the targeted security property of the sys-
tem. This is done by describing the behaviour of
trusted components (labelled ® in the figure), and
modelling untrusted components as capable of car-
rying out any series of actions authorised by the set
of capabilities they possess. If, under these assump-
tions, a proof of security succeeds, nothing further
needs to be proven about the untrusted components.

2. Prove that the code of the run-time TCB (i.e.,
the trusted components and underlying kernel) cor-
rectly implements the security model used for the
proof. This involves taking the simple model used
to perform the proof in step 1, and then refining
it (possibly via several increasingly more precise
models), down to the final system’s implementation.

The second step involves three tasks, most of them be-
ing on-going or future work. First, we need to prove
that the kernel implementation refines its security model.
Building on seL4’s proof of correctness reduces this task
to proving that the high-level specification the kernel im-
plements refines the security model. This is on-going

work. The second task is to prove that the trusted compo-
nents’ implementations refine their formal behavior. This
has not been done for the SAC system but our experience
from the kernel verification and the framework built for
such refinement give us confidence that this task is fea-
sible. The last task consists in proving that the initial
capability distribution in the system implementation sat-
isfies the abstract security architecture. We have defined
a capability distribution language, called capDL [8], with
a formal semantics that aims to be used to automatically
and formally link a user-defined capability distribution
description of the system to both an initial implementa-
tion state and an abstract security architecture.

The remainder of this section describes the first step of
the two listed above in detail, illustrating them with our
SAC case study.

4.1 Notation

We briefly introduce the notation used for the remain-
der of this paper. Our meta-language Isabelle/HOL con-
forms for the most part with normal mathematical nota-
tion.

The space of total functions is denoted by ⇒. Type
variables are written ′a, ′b, etc. The notation t :: τ
means that HOL term t has HOL type τ . The option type
datatype ′a option = None | Some ′a adjoins a new element
None to a type ′a. Function update is written f (x := y)
where f :: ′a ⇒ ′b, x :: ′a and y :: ′b and f (x 7→ y) stands
for f (x := Some y).

Isabelle supports tuples with named components. For
instance, we write record point = x :: nat, y :: nat for the
type point with two components of type nat. If p is a
point, a possible value for p is notated (|x=5,y=2|). The
term x p stands for the x-component of p. Updating p
from a current value (|x=5,y=2|), with the update notation
p(|x:=4|), gives (|x=4,y=2|). Finally, the keyword types
introduces a type abbreviation.

4.2 Underlying access control model

From a security point of view, the operations provided
by the kernel can be reduced to seven possible opera-
tions: read, write, create, delete, remove, grant, revoke
and four corresponding access rights: read (r), write (w),
create (c) and grant (g). The seL4 kernel supports more
operations, but purely from the security perspective, each
of them can be reduced to a sequence of these seven. For
instance an IPC receive can be reduced to a read, while
an IPC send can be reduced to a write.

The first five operations allow a component to read or
write from another component, to create a new compo-
nent, to delete an existing component, or to remove an
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Figure 3: Full-system verification approach for seL4-based system

existing capability. All of these operations require the
acting component to hold the correct capability to the
target entity. The last two operations, grant and revoke,
enable a component to delegate one of its capabilities to
another component or to withdraw one or more capabili-
ties from other components. Whereas the grant operation
requires an explicit capability for authorisation as above,
the revoke operation is authorised implicitly. Each com-
ponent may revoke any capability it has created and all
copies it has granted as long as it still holds the original
capability. The kernel internally tracks this create/grant
relationship in an internal book-keeping mechanism, and
authorises revoke and delete operations accordingly.

In the following, we define the state space the applica-
tion level entities will operate in, together with the tran-
sitions on this state space that the seL4 kernel allows.

4.2.1 State Space Model

Our model is largely inspired by seL4’s security model
developed in previous work [4, 5, 2]. In this previous
work, all the kernel objects (active and inactive) are mod-
elled as entities, and the state space only stores the ca-
pabilities each entity in the system has access to. In
other words, it abstracts away from all application-local
or kernel-internal storage, and instead concentrates on
how capabilities—and therefore access to information—
are distributed throughout the system. The only exten-
sion made here is regarding storage: for certain security
properties we may need to track additional state.

For instance, in our case study, the property we are in-
terested in for the SAC is the absence of explicit informa-
tion flow, i.e., confidential data being explicitly read by
an external entity. For simplicity, we only aim to prove
that there is no information flow from NIC-A to NIC-B
(the property being symmetric). The confidential data
is therefore the data coming from NIC-A and the exter-
nal entity that should not obtain any information from

this confidential data is NIC-B. The approach taken is to
tag the data coming from NIC-A as confidential. This
means that we give any entity with storage (memory and
network cards) a flag denoting whether it could possibly
contain data from NIC-A. Entities that have this flag set
are called contaminated. In their initial state, no entity,
other than NIC-A, is contaminated. Each time an entity
reads from a contaminated entity, it too becomes con-
taminated. Likewise, if a contaminated entity performs a
write operation to another entity, the target becomes con-
taminated. The goal then is to prove that the whole SAC
can never reach a state where NIC-B is contaminated.

Entities are therefore represented by the set of capabil-
ities they hold and their “contamination status”:

record entity =
caps :: cap set
contam :: bool

Each capability contains a reference to an entity it
grants rights to, and the set of access rights it provides:

datatype right = Read | Write | Grant | Create
record cap =

entity :: entity-id
rights :: right set

Both the capability set and each entity’s contamination
state can dynamically change. The state of the system
at a given point is a function from entity identifiers to
entities. We model the fact that not all entity identifiers
are mapped to entities by using the option type:
datatype entity-id =

SacController | NicA | NicB | NicC | NicD
| RouterManager | Router | RouterMem | RouterCode
| Timer | TimerChip | UnknownEntity nat.

types state = entity-id⇒ entity option

Note that the entity’s contamination status can be gen-
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eralised to other kinds of storage information required by
a label-based security property.

4.2.2 System operations

The possible basic transitions on this state space are de-
scribed by the kernel operations available to components.

We do not model the revoke operation in its general
case here, but instead represent it by the specific se-
quence of remove operations that eventually take place.
The operations’ formalization is the following:

datatype sys-op =
SysRead cap | SysWrite cap bool
| SysCreate cap | SysGrant cap cap
| SysDelete cap | SysRemoveSet cap (cap set)

All of the operations take a capability pointing to the
targeted entity. In the case of SysRead c for instance, the
entity performing the operation is reading from the en-
tity referred to by the capability c. The operation will
only be allowed by the kernel if the capability c is held
by the entity performing the operation and includes at
least the read right. SysGrant also takes the capability
to be granted and SysWrite takes a boolean flag which
is true if the write operation is a flush operation, remov-
ing an entity’s contamination flag. Such an operation is
required to model the router manager’s sanitisation of
NIC-D when the network is being switched. The final
operation SysRemoveSet removes a set of capabilities.

The authorisation check for all the system operations
is summarised in the function legal s e sysop defining the
conditions for entity e to perform operation sysop in state
s. For instance:
legal s e (SysRead c) =

(is-entity s e ∧ is-entity s (entity c) ∧
c ∈ entity-caps-in-state s e ∧ Read ∈ rights c)

where is-entity ensures that entity e is defined in s and
entity-caps-in-state retrieves the capabilities held by e.

4.2.3 State transitions

We now look at how the state changes for each operation.
This is modelled by the function step s e sysop defining
the resulting state after the entity e has performed opera-
tion sysop on state s. For instance, we model both reads
and writes as a write-operation (with the direction of the
write switched for reads):
step s e (SysWrite c b) = write-operation e (entity c) b s
step s e (SysRead c) = write-operation (entity c) e False s

where write-operation is defined as follows:

write-operation source target is-flush ss ≡

(case ss target of
Some target-entity⇒
ss(target 7→ target-entity(| contam :=
((is-contam ss target ∨ is-contam ss source)
∧ ¬is-flush)|))

| -⇒ ss)

The other operations are defined similarly and are used
to define step. A legal-step is defined as a step of the
system that only takes place if it is legal. If the operation
can not be performed (because the thread attempting the
operation doensn’t have an appropriate capability, for in-
stance), the operation silently fails and the system state
remains unchanged:

legal-step s e-id sysop ≡
if legal s e-id sysop then (step s e-id sysop) else s

This model, for simplicity, does not allow threads to
determine if an operation failed; trusted threads need
to ensure that they have the correct resources before at-
tempting any security-critical operation.

4.3 Component-level model

So far we have described the states and transitions of
the underlying kernel which the components will run on.
This model is used to describe the components’ behav-
ior as sequences of instructions, where each instruction
is a step modifying the global state of the system. As ex-
plained earlier, we model only the trusted components’
behavior. No restriction at all is placed on the untrusted
components, and they will be correctly implemented by
any concrete program code. Their behaviour is only con-
strained by the authority they are given via capabilities.
In our case study this means that the router instance,
when it has received the capabilities to its network cards,
will be able to attempt any behaviour, but the kernel will
only allow access to the two network cards (NIC-A and
NIC-D, say) it possesses capabilities to at this point. If
we can show that the system is secure with this uncon-
strained behaviour, it will also be secure with any specific
implementation of the router components.

While the specification of untrusted components is
simple, the specification of trusted components requires
more care. We rely on specific behaviour of the trusted
component for the security of the overall system. In our
case study, we rely on the router manager to execute spe-
cific operations in a specific order, such as creating the
router instance, granting capabilities, revoking capabili-
ties, flushing the network cards, etc.

We model the program of such trusted entities as a list
of instructions, each of which either performs a kernel
operation (SysOp) or changes the program counter of the
entity (Jump). To avoid needing to reason about imple-
mentation details of trusted entities, flow control (such
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as ‘if’ and ‘case’ statements) is modelled by non-
deterministic choice, which itself is modelled by hav-
ing the Jump instruction accept a list of targets. Un-
trusted entities may perform any operation they wish, so
are modelled with a program consisting of an AnyOp in-
struction, representing any legal kernel operation:

datatype instruction =
SysOp sys-op
| Jump nat list
| AnyOp

types program = entity-id⇒ instruction list

To model the behavior of the whole system, we need
to represent the fact that entities run concurrently. We
model this behaviour by considering all possible inter-
leavings of instructions between entities. For this, we
keep track of a program counter for each component in
an additional program counter state:

record sys-state =
sys-entity-st :: state
sys-pc-st :: entity-id⇒ nat

One execution step of the whole system consists of non-
deterministically choosing any existing active entity and
running its current instruction (specified by its program
counter). This models the seL4 kernel scheduler. If the
current instruction is AnyOp, then we pick any arbitrary
operation that is legal in the current state for this entity
and execute it. We thus get a safe over-approximation of
all possible execution traces of the system.

To model a single step of a particular entity e-id, we
look at the instruction at that entity’s program counter.
If it is a SysOp or AnyOp operation, it is executed us-
ing legal-step producing a new state of the system. If
the instruction is a Jump operation, the model non-
deterministically updates the current entity’s program
counter to one of the values in the list loffset. In both
cases, the model requires that the entity performing the
instruction exists and that the entity’s program counter is
within the bounds of its program:

inductive
entity-operation :: entity-id⇒ sys-state⇒ sys-state⇒ bool

where
entitySysOp:

[[ ss = (| sys-entity-st = s, sys-pc-st = pc |);
is-entity s e-id; pc e-id = e-pc;

sys-program e-id = e-prog; e-pc < length e-prog;

e-prog ! e-pc = SysOp oper ∨ e-prog ! e-pc = AnyOp;

s ′ = legal-step s e-id oper;
new-pc = (e-pc + 1) mod (length e-prog);

ss ′ = (|sys-entity-st=s ′,sys-pc-st=pc(e-id:=new-pc)|)]]
=⇒ entity-operation e-id ss ss ′

| entityJump:

[[ ... (∗ as above ∗)

Figure 4: SAC initial state (partial)

e-prog ! e-pc = Jump loffset;
new-pc ∈ set loffset;
ss ′ = (|sys-entity-st=s,sys-pc-st=pc(e-id:=new-pc)|)]]
=⇒ entity-operation e-id ss ss ′

A single execution step of the whole system is then
modelled by the relation ss → ss ′ which is true if ss ′ is
a possible resulting system state after executing the cur-
rent instruction of any existing active entity in the system
state ss. An execution ss →∗ ss ′ is then defined as a se-
quence of execution steps.

We have now defined execution and implicitly with the
relation above all possible execution traces of the system.

Instantiation to a given system. This formalisation
of seL4-based systems’ behavior can be instantiated to
a specific componentised system like the SAC. This is
done by defining the initial capability distribution for this
system and the program of each of its trusted compo-
nents. For instance, the initial state for the SAC system
(partially illustrated in Figure 4) is modelled as:

SAC-startup≡ (|sys-entity-st=SAC-init-state, sys-pc-st=λx. 0|)
where SAC-init-state defines the initial capability set for
each component, together with their contamination status
(of which all components other than NIC-A are initially
uncontaminated). For instance, the router manager’s ini-
tial state looks like:

RM0 ≡ (| caps = { cap-RW-to-NIC-A, ...}, contam = False |)
where we take the convention that the name of each cap
is of the form: cap-<rights>-to-<target-entity>, as in:

cap-RW-to-NIC-A ≡ (| entity=NicA, rights = {Read, Write} |)

Each trusted component’s behaviour is modelled as a
sequence of instructions. For instance, the router man-
ager in our case study will be formalized as follows.

RM-prg ≡
[(∗ 00: Wait for command, delete router manager. ∗)
SysOp (SysRead cap-R-to-SAC-C),

SysOp (SysRemoveAll cap-C-to-R),

SysOp (SysDelete cap-C-to-R),

SysOp (SysWriteZero cap-RW-to-NIC-D),

...

7



Jump [0, 10, 19],

(∗ 10: Setup router between NIC−A and NIC−D. ∗)
SysOp (SysCreate cap-C-to-R),

SysOp (SysNormalWrite cap-RWGC-to-R),

SysOp (SysGrant cap-RWGC-to-R cap-RW-to-NIC-A),

SysOp (SysGrant cap-RWGC-to-R cap-RW-to-NIC-D),

SysOp (SysGrant cap-RWGC-to-R cap-R-to-R-code),

... ]

The sys-program function that associates a program to
each component (used entity-operation) is defined as:

sys-program eid ≡
if (eid = RouterManager) then RM-prg
else if (eid ∈ untrusted-entities) then [AnyOp] else []

where untrusted-entities for the SAC consist of SacCon-
troller, Router, Timer and where the inactive entities
(such as the network cards) are associated with empty
programs.

4.4 Security property proof

With the model described, we can now formally state
the security property we are targeting for our SAC case
study. The property we are interested in is the absence of
explicit information flow. As explained earlier, we model
the fact that NIC-B cannot read information from NIC-A
in a given state as NIC-B not being contaminated. In par-
ticular, we state that in any state that the SAC can reach
starting from its initial state, NIC-B is not contaminated
with data from NIC-A:

lemma sacSecurity: [[ SAC-startup→∗ ss ′ ]] =⇒
¬ is-contaminated (sac-entity-st ss ′) NicB

The proof relies on showing an invariant always holds
on the state of the SAC. The invariant insists that: (i)
Only NIC-A, the router (and associated components) and
NIC-D ever become contaminated; (ii) The capabilities
held by each component is limited to a small, secure set;
(iii) The router doesn’t have capabilities to both NIC-A
and NIC-B at the same time; (iv) The router doesn’t have
a capability to NIC-B while any component it can access
is contaminated; (v) The capabilities held by the router
manager at every point of time is sufficient to allow it
perform its job of deleting the router and sanitising NIC-
D; (vi) All entities other than the router always exist; and
finally (vii) That certain conditions about the state of the
router hold when the router manager’s program counter
is at particular values.

The last invariant is the most intricate, and is required
to show that the system remains in a well-known state
while the router manager is mid-way through deleting
or creating the router instance. For instance, when the
router manager’s program counter points to an instruc-
tion granting the router access to NIC-B, we must know

that the router is in an uncontaminated state, which can
only be established because the router manager earlier
deleted the router, and hasn’t provided it with any caps
to NIC-A since.

The final security property follows directly from the
invariant, which states that NIC-B will always be uncon-
taminated.

5 Related Work

The idea of using system architectures to ensure security
by construction, relying on basic kernel mechanisms to
separate trusted from untrusted code is widely explored
in the MILS (multiple independent levels of security and
safety) space [1]. In the context of formal analyses of
capability-based software, Spiessens [12] developed the
formal language Scoll to model the behaviour of trusted
components, together with a model-checker for that lan-
guage to check capability-based software.

Murray [9] builds on Spiessens’ concepts, but uses a
CSP, for which model-checking tools already exist. Its
main contribution is to extend the kind of properties that
can be expressed to also include noninterference style in-
formation flow properties (under the assumption that the
capability system that the software is running on does not
expose covert channels between unconnected objects)
and liveness properties under fairness assumptions.

Both Spiessens’ and Murray’s work explicitly prove
that it is safe to take multiple entities and model them
as a single entity that possesses the union of their capa-
bilities and exhibits the union of their behaviours. This
idea is also part of our vision, with the addition of a
capability abstraction (the capability distribution in Fig-
ure 3 to reason about typed capabilities upon kernel ob-
jects, whereas at the security architecture level, the sim-
ple model of read, write, create, grant capabilities be-
tween components is used). However, the proof that it is
safe to aggregate entities in this way is part of our future
work.

To the best of our knowledge, our work is the first
to use interactive theorem proving rather than model-
checking to verify capability based systems by modelling
trusted components’ behaviour. We also modelled the
SAC using the SPIN model checker [6] for comparison.
Although the proof effort was reduced from around six
weeks (by an inexperienced Isabelle/HOL user) to less
than one day, our model quickly reached a size that was
beyond the abilities of SPIN to verify in a reasonable
amount of time and memory. In particular, we could
only verify our final system design by making simpli-
fying assumptions in the SPIN model. The other main
benefit of using a theorem prover is being provided with
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a framework to prove the refinement between the security
architecture and trusted components’ behaviour, and the
system implementation. Assuring label-based security
properties about the actual implementation of real-world
system is the real added value of the framework we pro-
pose. Investigating how interactive theorem proving and
model checking can be combined in a way that gives the
flexibility of the former with the ease-of-use of the latter
is part of our future work.

6 Conclusion

In this paper we have presented our vision of how large
software systems consisting of millions of lines of code
can still have formal guarantees about certain targeted
properties. This is achieved by building upon the access
control guarantees provided by the verified seL4 micro-
kernel and using it to isolate components such that their
implementation need not be reasoned about.

We have demonstrated in our SAC case study how
careful design and componentisation of a large system
can be used to reduce the run-time TCB from millions
of lines of code to just under 9000. Additionally, we
have modelled the design of the SAC and shown that the
modelled system fulfills its security goal of isolating data
between different networks.

What still remains is connecting the model used to
prove security of the system with the actual implemen-
tation. In particular, we must still show that (i) the C im-
plementation of trusted components in the SAC refine the
behaviour modelled in the security proof; and (ii) that the
kernel operations in the security proof correctly model
the actual behaviour of the seL4 kernel. The verification
success of the seL4 kernel, with its C code shown to im-
plement its functional specification, gives us confidence
that both of these tasks are feasible. Carrying out this
verification effort forms part of our ongoing work.
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thesis, Université catholique de Louvain, Louvain-
la-Neuve, Belgium, February 2007.

9



From a Verified Kernel Towards Verified Systems

Gerwin Klein

1 NICTA, Australia
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

gerwin.klein@nicta.com.au

Abstract. The L4.verified project has produced a formal, machine-
checked Isabelle/HOL proof that the C code of the seL4 OS microkernel
correctly implements its abstract implementation. This paper briefly
summarises the proof, its main implications and assumptions, reports on
the experience in conducting such a large-scale verification, and finally
lays out a vision how this formally verified kernel may be used for
gaining formal, code-level assurance about safety and security properties
of systems on the order of a million lines of code.

1 L4.verified

In previous work [13], we reported on the result of the L4.verified project: a
machine-checked, formal verification of the seL4 operating system microkernel
from a high-level model in Higher-Order logic down to low-level C code.

To the best of our knowledge, this is the first complete code-level proof of
any general-purpose OS kernel, and in particular the first machine-checked such
proof of full functional correctness.

Early pioneering attempts at formal OS verification like UCLA Secure
Unix [20] or PSOS [9] did not proceed substantially over the specification phase.
In the late 1980s, Bevier’s KIT [2] is the first code-level proof of an OS kernel,
albeit only a very simple one. There have been a number of formal verifications
of either functional correctness, temporal, or information flow properties of OS
kernels, recently for instance the Common Criteria EAL6+ certified INTEGRITY
kernel [18]. None of these, however, truly formally verified the code-level imple-
mentation of the kernel. Instead, what is verified is usually a formal model of
the code, which can range from very precise as in the INTEGRITY example
to design-level or more abstract models. Correspondence between C code as
seen by the compiler and the formal model is established by other means. In
the L4.verified project, this critical missing step is for the first time formal and
machine-checked.

Contemporary OS verification projects include Verisoft, Verisoft XT, and
Verve. The Verisoft project has not yet fully completed all parts of its OS kernel
proof, but it has conclusively demonstrated that formal verification of OS code can
be driven down to verified hardware — similarly to the verified CLI stack [3] from
the 1980s, but going up to a verified C0 compiler with support for inline assembly



and up to substantial scale. The Verisoft XT project [7] has demonstrated that
the technology exists to deal with concurrent C at a scale of tens of thousands
lines of code. The Verve kernel [22] shows that type and memory safety properties
can be established on the assembly level via type systems and therefore with
much lower cost. Verve contains a formally verified runtime system, in particular
a garbage collector that the type system relies on. Even though it only shows
type safety, not functional correctness, the smaller cost of verification makes
the approach attractive for larger code bases if full functional correctness is not
required or too expensive to obtain.

The formal proof for the seL4 kernel establishes a classical functional correct-
ness result: all possible behaviours of the C implementation are already contained
in the behaviours of its abstract specification. In the L4.verified project, this proof
was conducted in two stages in the interactive theorem prover Isabelle/HOL [17].
The first stage is comparable to other detailed model-level kernel verifications. It
connects an abstract, operational specification with an executable design spec-
ification of the kernel. This design specification is low-level enough to clearly
see a direct one-to-one correspondence to C code for the large majority of the
code. The second step in the proof was to show that the C code implements
this low-level design. The result is one concise overall theorem in Isabelle/HOL
stating that the behaviour of the C code as specified by its operational semantics
is contained in the behaviours of the specification.

Like any proof, this verification has assumptions. For the correctness of a
running seL4 system on real hardware we need to assume correctness of the C
compiler and linker, assembly code, hardware, correct use of low-level TLB and
cache-flushing instructions, and correct boot code. The verification target was
the ARM11 uniprocessor version of seL4. There also exists an (unverified) x86
port of seL4 with optional multi-processor and IOMMU support.

The key benefit of a functional correctness proof is that proofs about the C
implementation of the kernel can now be reduced to proofs about the specification
if the property under investigation is preserved by refinement. Additionally, our
proof has a number of implications, some of them desirable direct security
properties. If the assumptions of the verification hold, we have mathematical
proof that, among other properties, the seL4 kernel is free of buffer overflows,
NULL pointer dereferences, memory leaks, and undefined execution. There are
other properties that are not implied, for instance general security without
further definition of what security is or information flow guaranties that would
provide strict secrecy of protected data. A more in-depth description of high-level
implications and limitations has appeared elsewhere [12,11].

2 What have we learned?

To be able to successfully complete this verification, we have contributed to the
state of the art in theorem proving and programming languages on a number
of occasions, including tool development [16], memory models [19], and scalable
refinement frameworks [6,21]. These are published and do not need to be repeated



in detail here. Other interesting aspects of the project concern lessons that are
harder to measure such as proof engineering, teaching theorem proving to new
team members, close collaboration between the kernel and verification teams,
and a prototyping methodology for kernel development.

On a higher level, the main unique aspects of this project were its scale
and level of detail in the proof. Neither would have been achievable without a
mechanical proof assistant. The proof, about 200,000 lines of Isabelle script, was
too large for any one person in the team to fully keep in their head, and much
too large and technically involved to manually check and have any degree of
confidence in the result. Software verifications like this are only possible with the
help of tools.

The cost of the verification was around 25 person years counting all parts
of the project, including exploratory work and models that were later not used
in the verification. About twelve of these person years pertain to the kernel
verification itself. Most of the rest was spent on developing frameworks, tools,
proof libraries, and the C verification framework, including a precise memory
model [19] and a C to Isabelle/HOL parser [21].

This means, we have demonstrated that proving functional correctness of
low-level C code is possible and feasible at a scale of about 10,000 lines of code,
but the cost is substantial. Clearly, we have to conclude that currently this
approach does not lend itself to casual software development.

The story is different for high-assurance systems. It is currently very expensive
to build truly trustworthy systems and to provide substantial assurance that
they will indeed behave as expected. It is hard to get useful numbers for such
comparisons, but one data point that is close enough, and where some experience
and cost estimates are available, are Common Criteria (CC) security evaluations.
CC on high evaluation levels prescribe the use of formal specifications and proofs
down to the design level. Correspondence of models to code is established by
testing and inspection.

L4.verified spent about $700 per line of code (loc) for the verification if we
take the whole 25 person years, and less than $350/loc if we take the 12 actually
spent on the kernel. We estimate that, with the experience gained and with
the tools and libraries available now, the cost could be further reduced to 10,
maybe 8 person years for a similar code base verified by the same team, i.e. about
$230/loc. Even assuming $350/loc, the verification compares favourably with the
quoted cost for CC EAL6 evaluation at $1000/loc [10]. EAL7 (the highest CC
level) which arguably still provides less assurance than formal code-level proof,
can safely be assumed to be more costly still. The comparison is not entirely fair,
since the Common Criteria mostly address security properties and not functional
correctness, and because the verification aspect is only one of the aspects of the
certification process. On the other hand one can argue that general functional
correctness is at least as hard to prove as a specific security property and that
while verification is not the only aspect, it is the most expensive one. We believe
that formal, code-level verification is cost attractive for the vendor as well as for
the certification authority, while increasing assurance at the same time.



For the certification authority, risk is reduced. Since the proof is machine-
checked, only the high-level specification and its properties as well as the bottom-
level model need to be scrutinised manually and with care to trust the system.
Validating the high-level properties is the same as in the current evaluation
scheme. The bottom-level model, however, is different. In the current scheme, the
bottom level model is different for each certification and needs to be connected to
code by careful validation, testing and inspection which is expensive to conduct
and hard to check. In our case, the model does not depend on the certification
artefact: it is just the semantics of our subset of C. Once validated, this could
be re-used over many certifications and amortised to gain even higher assurance
than what would otherwise be cost effective.

Our result of feasible but high-cost verification at about 10,000 loc does
not mean that formal verification could not scale further. In fact, microkernels
such as seL4 typically lack two properties that make formal verification scale
better: modularity and strong internal abstractions. We would expect application-
level code and even user-level OS code to be much better targets for scalable,
compositional verification techniques.

However, even with nicely structured code, it appears infeasible at this stage
to formally verify the functional correctness of systems with millions of lines of
code. The field is making progress in scaling automated techniques for reasonably
simple properties to such systems, but complex safety or security properties or
properties that critically rely on functional correctness of at least parts of the
system still appear without our reach.

3 A Secure System with Large Untrusted Components

This section presents a vision of how assurance even of complex safety properties
could nevertheless be feasibly be achieved within (or close to) the current state
of the art in code-level formal proof.

The key idea is the original microkernel idea that is also explored in the
MILS (multiple independent levels of security and safety) space [4]: using sys-
tem architectures that ensure security by construction, relying on basic kernel
mechanisms to separate trusted from untrusted code. Security in these systems
is not an additional feature or requirement, but fundamentally determines the
core architecture of how the system is laid out, designed, and implemented.

This application space was one of the targets in the design of the seL4 kernel.
Exploiting the verified properties of seL4, we should be able to architect systems
such that the trusted computing base for the desired property is small and
amenable to formal verification, and that the untrusted code base of the system
provably cannot affect overall security.

The basic process for building a system in this vision could be summarised as
follows:

1. Architect the system on a high level such that the trusted computing base is
as small as possible for the security property of interest.



2. Map the architecture to a low-level design that preserves the security property
and that is directly implementable on the underlying kernel.

3. Formalise the system, preferably on the architecture level.
4. Analyse, preferably formally prove, that it enforces the security property.

This analysis formally identifies the trusted computing base.
5. Implement the system, with focus for high assurance on the trusted compo-

nents.
6. Prove that the behaviour of the trusted components assumed in the security

analysis is the behaviour that was implemented.

The key property of the underlying kernel that can make the security analysis
feasible is the ability to reduce the overall security of the system to the security
mechanisms of the kernel and the behaviour of the trusted components only.
Untrusted components will be assumed to do anything in their power to subvert
the system. They are constrained only by the kernel and they can be as big and
complex as they need to be. Components that need further constraints on their
behaviour in the security analysis need to be trusted to follow these constraints.
They form the trusted components of the system. Ideally these components are
small, simple, and few.

In the following subsections I demonstrate how such an analysis works on an
example system, briefly summarise initial progress we have made in modelling,
designing, formally analysing, and implementing the system, and summarise the
steps that are left to gain high assurance of overall system security. A more
detailed account is available elsewhere [1].

The case study system is a secure access controller (SAC) with the sole purpose
of connecting one front-end terminal to either of two back-end networks one at a
time. The back-end networks A and B are assumed to be of different classification
levels (e.g. top secret and secret), potentially hostile and collaborating. The
property the SAC should enforce is that no information may flow through it
between A and B.

3.1 Architecture

Figure 1 shows the high-level architecture of the system. The boxes stand for
software components, the arrows for memory or communication channel access.
The main components of the SAC are the SAC Controller (SAC-C), the Router
(R), and the Router Manager (RM). The Router Manager is the only trusted
user-level component in the system. The system is implemented on top of seL4
and started up by a user-level booter component. The SAC Controller is an
embedded Linux instance with a web-server interface to the front-end control
network where a user may request to be connected to network A or B. After
authenticating and interpreting such requests, the SAC Controller passes them
on as simple messages to the Router Manager. The Router Manager receives such
switching messages. If, for example, the SAC is currently connected to A, there
will be a Router instance running with access to only the front-end data network
card and the network card for A. Router instances are again embedded Linuxes
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Fig. 1. SAC Architecture

with a suitable implementation of TCP/IP, routing etc. If the user requests a
switch to network B, the Router Manager will tear down the current A-connected
Linux instance, flush all network cards, create a new Router Linux and give it
access to network B and the front end only.

The claim is that this architecture enforces the information flow property.
Each Router instance is only ever connected to one back-end network and all
storage it may have had access to is wiped when switching. The Linux instances
are large, untrusted components in the order of a million lines of code each. The
trusted Router Manager is small, about 2,000 lines of C.

For this architecture to work, there is an important non-functional requirement
on the Linux instances: we must be able to tear down and boot Linux in acceptable
time (less than 1-2 seconds). The requirement is not security-critical, so it does
not need to be part of the analysis, but it determines if the system is practical.
Our implementation achieves this.

So far, we have found an architecture of the system that we think enforces the
security property. The next sections explore design/implementation and analysis.

3.2 Design and implementation

The main task of the low-level design is to take the high-level architecture
and map it to seL4 kernel concepts. The seL4 kernel supports a number of
objects for threads, virtual memory, communication endpoints, etc. Sets of these
map to components in the architecture. Access to these objects is controlled by
capabilities: pointers with associated access rights. For a thread to invoke any



operation on an object, it must first present a valid capability with sufficient
rights to that object.

Figure 2 shows a simplified diagram of the SAC low-level design as it is
implemented on seL4. The boxes in the picture stand for seL4 kernel objects,
the arrows for seL4 capabilities. The main message of this diagram is that it
is significantly more complex than the architecture-level picture we started out
with. For the system to run on an x86 system with IOMMU (which is necessary
to achieve untrusted device access), a large number of details have to be taken
care of. Access to hardware resources has to be carefully divided, large software
components will be implemented by sets of seL4 kernel objects with further
internal access control structure, communications channels and shared access
need to be mapped to seL4 capabilities, and so forth.

The traditional way to implement a picture such as the one in Figure 2 is
by writing C code that contains the right sequence of seL4 kernel calls to create
the required objects, to configure them with the right initial parameters, and to
connect them with the right seL4 capabilities with the correct access rights. The
resulting code is tedious to write, full of specific constants, and not easy to get
right. Yet, this code is crucial: it provides the known-good initial capability state
of the system that the security analysis is later reduced to.

To simplify and aid this task, we have developed the small formal domain-
specific language capDL [15] (capability distribution language) that can be used
to concisely describe capability and kernel object distributions such as Figure 2.
A binary representation of this description is the input for a user-level library in
the initial root task of the system and can be used to fully automatically set up
the initial set of objects and capabilities. Since capDL has a formal semantics
in Isabelle/HOL, the same description can be used as the basis of the security
analysis. It can also be used to debug, inspect and visualise the capability state
of a running system.

For further assurance, we plan to formally verify the user-level library that
translates the static capDL description into a sequence of seL4 system calls. Its
main correctness theorem will be that after the sequence of calls has executed,
the global capability distribution is the one specified in the original description.
This will result in a system with a known, fully controlled capability distribution,
formally verified at the C code level.

For system architectures that do not rely on known behaviour of trusted
components, such as a classic, static separation kernel setup or guest OS virtuali-
sation with complete separation, this will already provide a very strong security
argument.

The tool above will automatically instantiate the low-level structure and access-
control design into implementation-level C code. What is missing is providing
the behaviour of each of the components in the system. Currently, components
are implemented in C, and capDL is rich enough to provide a mapping between
threads and the respective code segments that implement their behaviour. If the
behaviour of any of these components needs to be trusted, this code needs to
be verified — either formally, or otherwise to the required level of assurance.



� �

�
���

�
���

�

�����

����

�
��

����

�
�
��
�
�
�
�
	

���
����	�

����

����

����

����

����	

����

����	

�

��

�
���

� �� �
�

�


�
�
�

� �� � �����

������� �� �
�
�

�
���

� �� � �����

��
����	�

���

���

����

�

���

������

�
���

�
���

����

�
�
�
�
��
�
�
�
�
	

�
���

�
���

����

�
�
�
�
�
��
�
�
�
�
	

���

����

����

���

�

�	������������

��
�
�

�����	���	��������	���

��
�

��

����

�	������������ ������	����������

��
�
�

�
�
�
�

�
�

���

���

���
�
�

����

��
�
�

���

���

���
�
�

����

��
�
�

������ !
�
������������	

����

�"�	�����

���������

����	

����

����

����	

����

����

����

�
�
�
�

�
�

�
�
�
�

�
�

��
�

��
�

���

����

����

����

���������

���������������������������
���������������	�������������
���������������������	

����� !	�������"
�������	

������#��	����������

���

���

���
�
�

����

��
�
�

�
�
�
�

�
�

���

���

Fig. 2. Low-Level Design



Fig. 3. SAC Abstraction

There is no reason component behaviour has to be described in C — higher-level
languages such as Java or Haskell are being ported to seL4 and may well be
better suited for providing assurance.

4 Security Analysis

Next to the conceptual security architecture of the SAC, we have at this stage
of the exposition a low-level design mapping the architecture to the underlying
platform (seL4), and an implementation in C. The implementation is running
and the system seems to perform as expected. This section now explores how we
can gain confidence that the SAC enforces its security property.

The capDL specification corresponding to Figure 2 is too detailed for this
analysis. Instead, we would like to conduct the analysis on a more abstract level,
closer to the architecture picture that we initially used to describe the SAC.

In previous work, we have investigated different high-level access control
models of seL4 that abstract from the specifics of the kernel and reduce the
system state to a graph where kernel objects are the nodes and capabilities
are the edges, labelled with access rights [8,5]. We can draw a simple formal
relationship between capDL specifications and such models, abstracting from
seL4 capabilities into general access rights. We can further abstract by grouping
multiple kernel objects together and computing the capability edges between
these sets of objects as the union of the access rights between the elements of
the sets. With suitable grouping of objects, this process results in Figure 3 for
the SAC. The figure shows the initial system state after boot, the objects in
parentheses (R) and (R-mem) are areas of memory which will later be turned
into the main Router thread and its memory frames using the create operation,
an abstraction of the seL4 system call that will create the underlying objects.



This picture now describes an abstract version of the design. We have cur-
rently not formally proved the connection between this model and the capDL
specification, neither have we formally proved that the grouping of components is
a correct abstraction, but it is reasonably clear that both are possible in principle.

For a formal security analysis, we first need to express the behaviour of RM
in some way. In this case, we have chosen a small machine-like language with
conditionals, jumps, and seL4 kernel calls as primitive operations. For all other
components, we specify that at each system step, they may nondeterministically
attempt any operation — it is the job of the kernel configured to the capability
distribution in Figure 3 to prevent unwanted accesses.

To express the final information flow property, we choose a label-based security
approach in this example and give each component an additional bit of state:
it is set if the component potentially has had access to data from NIC A. It is
easy to determine which effect each system operation has on this state bit. The
property is then simple: in no execution of the system can this bit ever be set for
NIC B.

Given the behaviour of the trusted component, the initial capability distri-
bution, and the behaviour of the kernel, we can formally define the possible
behaviours of the overall system and formally verify that the above property is
true. This verification took a 3-4 weeks in Isabelle/HOL and less than a week to
conduct in SPIN, although we had to further abstract and simplify the model to
make it work in SPIN.

A more detailed description of this analysis has appeared elsewhere [1].

5 What is Missing?

With the analysis described so far, we do not yet have a high-assurance system.
This section explores what would be needed to achieve one.

The main missing piece is to show that the behaviour we have described in a
toy machine language for the security analysis is actually implemented by the
2,000 lines of C code of the Router Manager component. Most of these 2,000 lines
are not security critical. They deal with setting up Linux instances, providing
them with enough information and memory, keeping track of memory used etc.
Getting them wrong will make the system unusable, because Linux will fail
to boot, but it will not make it break the security property. The main critical
parts are the possible sequence of seL4 kernel calls that the Router Manager
generates to provide the Linux Router instance with the necessary capabilities to
access network cards and memory. Classic refinement as we have used it to prove
correctness of seL4 could be used to show correctness of the Router Manager.

Even with this done, there are a number of issues left that I have glossed over
in the description so far. Some of these are:

– The SAC uses the unverified x86/IOMMU version of seL4, not the verified
ARM version. Our kernel correctness proof would need to be ported first.

– We need to formally show that the security property is preserved by the
existing refinement.



– We need to formally connect capDL and access control models. This includes
extending the refinement chain of seL4 upwards to the levels of capDL and
access control model.

– We need to formally prove that the grouping of components is a correct,
security preserving abstraction.

– We need to formally prove that the user-level root task sets up the initial
capability distribution correctly and according to the capDL specification of
the system.

– We need to formally prove that the information flow abstraction used in the
analysis is a faithful representation of what happens in the system. This is
essentially an information flow analysis of the kernel: if we formalise in the
analysis that a Read operation only transports data from A to B, we need to
show that the kernel respects this and that there are no other channels in
the system by which additional information may travel. The results of our
correctness proof can potentially be used for this, but it goes beyond the
properties we have proved so far.

6 Conclusion

We have demonstrated that formal code verification at a scale of about 10,000 lines
of code is possible and feasible. We have argued that, for high-assurance systems,
it is also cost-effective. There are no real barriers to conducting verifications like
this routinely.

The bad news is that while these techniques may optimistically scale in the
next few years up to 100,000s lines of code for nicely structured, appropriate
code bases, realistic systems beyond that size still seem out of reach for the near
future. Modern embedded systems frequently comprise millions of lines of code.
None of these large systems are high-assurance systems yet, but a clear trend
towards larger and more complex systems is observable even in this space, and
some of these large systems, e.g. automobile code, should become high-assurance
systems, because current practices are unsatisfactory [14].

Even though we may not be able to prove full functional correctness of such
systems in the near future, our thesis is that it is nevertheless possible to provide
formal, code-level proof of specific safety and security properties of systems in the
millions of lines of code. We plan to achieve this by exploiting formally verified
microkernel isolation properties, suitable security architectures, and code-level
formal proofs for the small trusted computing base of such systems.
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ABSTRACT
Capabilities provide an access control model that can be used to
construct systems where safety of protection can be precisely de-
termined. However, in order to be certain of the security provided
by such systems it is necessary to verify that their capability dis-
tributions do in fact fulfil requirements relating to isolation and
information flow, and that there is a direct connection to the actual
capability distribution in the system. We claim that, in order to do
this effectively, systems need to have explicit descriptions of their
capability distributions. In this paper we present the capDL capabil-
ity distribution language for the capability-based seL4 microkernel.
We present the capDL model, its main features and their motivations,
and provide a small example to illustrate the language syntax and
semantics. CapDL plays a key role in our approach to development,
analysis, and verification of trustworthy systems.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.4.6 [Op-
erating Systems]: Security and Protection; D.2.4 [Software Engi-
neering]: Software/Program Verification

General Terms
Languages, Design

Keywords
Capabilities, capability distribution, security analysis, seL4, Isabelle

1. INTRODUCTION
Capabilities [1] are a powerful approach to building secure sys-

tems. They provide an access control model that allows system
designers to minimise authority of processes and that can be used
to precisely analyse the protection state of such systems. This is
particularly useful in the presence of security requirements that limit
information flow and impose isolation between system components.
In this paper we motivate the need for, and introduce our specific
approach to, explicit descriptions of the capability distribution in
such systems.

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0195-4/10/08 ...$10.00.

In a fully capability-based system, all objects, including resources
such as devices and memory, and system objects, such as pro-
cesses and communication channels, are referenced by capabilities –
unique tokens that act both as references and provide access rights
to objects. In order to access an object or perform an operation on
one, a subject must hold a capability to this object, and the capability
must provide sufficient rights for the operation. Capabilities may
be transferred between subjects, meaning that the set of objects
accessible by subjects can change over time. If a subject does not
possess a capability to an object, and cannot ever acquire such a
capability, it will not be able to access the object.

Since objects are only accessed through capabilities, they can
be used to restrict a subject’s access to only those objects that the
subject requires to perform its tasks correctly, but to no others.
This allows systems to be designed according to the principle of
least privilege [9]. Furthermore, the capabilities in a system can be
distributed such that they create distinct isolated subsystems, where
subjects in different subsystems cannot influence or communicate
with each other in any way.1 Besides strict isolation, the capability
model can also be used to create systems that allow limited inter-
subsystem communication over authorised channels. This enables
the construction of systems in which information flow is strictly
controlled.

A capability-based access control model that also provides a suit-
able authority transfer scheme, such as take-grant [6], can be shown
to be safe. This means that all future access rights that a subject may
obtain can be decided by analysing the current system state. Thus,
in order to determine the security of a capability-based system (in
particular with regard to its access and information flow policies)
it is sufficient to analyse its capability distribution, i.e., the distri-
bution of capabilities over all the subjects in the system. Such an
analysis will take into account all possible transformations of the
capability distribution to identify subsystems and the possible infor-
mation flow between them. Given specific access and information
flow requirements, the analysis can be used to determine whether a
system successfully fulfils these requirements [2].

In existing capability-based systems the capability distributions
are implicitly defined by the code that creates objects and transfers
capabilities between subjects at runtime. A security analysis thus re-
quires that the code first be analysed to determine which capabilities
exist, how they are initially set up, and how they are subsequently
propagated throughout the system. Depending on the code, this
could be a complex, and potentially infeasible, process.

We propose that capability-based systems should have an explicit
representation of the system’s capability distribution. While having
such a representation is essential for performing a security analy-

1Providing the system does not contain any side channels that bypass
the capability-based access control.
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Figure 1: The role of capDL in development, analysis, and ver-
ification.

sis or formal security verification of the system, it provides other
useful benefits. A clear description of a system’s desired capability
distribution helps the design and implementation process as well as
debugging and documentation. Debugging of the system is facili-
tated by being able to refer to the expected capability distribution,
as well as by having access to the actual capability distribution of
the system being debugged. A description of a system’s expected
and actual capability distribution can be used to produce clearer and
more complete system documentation.

In this paper we present capDL, a capability distribution language
for seL4 [5], a formally verified capability-based microkernel. The
purpose of capDL is to describe state snapshots of systems running
on seL4.

CapDL plays a central role in our overall vision for develop-
ment, analysis and verification of trustworthy embedded systems
(Figure 1). In this vision, the capDL specification of a system is man-
ually written or generated from a system architecture description (1).
The specification can be combined with component code, glue code
and a bootstrapping process to produce a runnable system image
(2). Alternatively a capDL specification can be dumped from a
running system (3). The capDL specification (whether hand-written,
generated, or dumped) together with behaviour specifications of the
system components serve as input into a security analysis tool that
verifies whether the system architecture fulfils the required security
policy (4). This verification can be further extended with refinement
proofs of the underlying seL4 kernel to prove security properties of
the actual system implementation (5).

In the rest of this paper we first present a brief overview of seL4
in Section 2 followed by a description of the capDL language in
Section 3 and a comparison of capDL with other approaches to
describing capability-based systems in Section 4. CapDL is a work
in progress. In Section 5 we present the current status of this work
and discuss our plans for its future. Finally we conclude in Section 6.

2. OVERVIEW OF SEL4
The seL4 microkernel is a small operating system kernel designed

to be a secure, safe, and reliable foundation for a wide variety
of application domains. As a microkernel, it provides a minimal
number of services to applications. The kernel services are general
enough for composing more complex operating system services that
run as applications on the microkernel. In this way, the functionality
of the system can be extended without increasing the code and

complexity in privileged mode, while still supporting a wide number
of services for varied application domains

Kernel services are provided through a small set of kernel im-
plemented objects whose methods can be invoked by applications.
These objects can only be accessed and manipulated using tamper-
proof capabilities. The operations an application can perform are,
therefore, determined by the set of capabilities the application pos-
sesses. The capabilities are stored in kernel managed memory and
can only be manipulated indirectly through the kernel. Capabilities
can be copied, moved, and sent using seL4’s inter-process commu-
nication (IPC) mechanism. The propagation of capabilities through
the system is controlled by a take-grant-based model.

The set of objects implemented by the kernel can be grouped into
six categories:

Capability Management Capabilities in seL4 are stored in kernel-
protected objects called CNodes. A CNode has a fixed number
of slots which is determined when the CNode is created. Indi-
vidual CNodes can be composed into a CSpace, a set of linked
CNodes. In order to invoke an operation on a capability, that
capability must be stored in an application’s CSpace.

Object and Memory Management The Untyped Memory capa-
bility is the foundation of memory allocation and object cre-
ation in the seL4 kernel. A kernel object is created by invoking
the retype method on an Untyped Memory capability. After
a successful retype invocation a capability to the new object
is placed in the application’s CSpace. Untyped capabilities
can also be used to reclaim retyped memory with the revoke
method.

Virtual Address Space Management A virtual address space in
seL4 is called a VSpace. In a similar way to CSpaces, a
VSpace is composed of objects provided by the microkernel.
The objects for managing virtual memory are architecture
specific. On the Intel IA32 architecture the root of a VSpace
consists of a Page Directory object, which contains references
to Page Table objects, which themselves contain references
to Frame objects representing regions of physical memory.

Thread Management Threads are the unit of application execu-
tion in seL4 and are scheduled, blocked, unblocked etc, de-
pending on the application’s interaction with other threads. A
TCB (thread control block) object exists for each thread and
provides the access point for controlling the thread. A TCB
contains capabilities that define the thread’s CSpace and VS-
pace. Note that multiple threads can share the same CSpace
and VSpace or parts thereof.

Inter-process Communication (IPC) Endpoints (EP) are used to
facilitate inter-process communication between threads. Syn-
chronous Endpoints provide rendezvous-style communication,
allowing the passing of data or capabilities between applica-
tions. When only notification of an event is required (with
no need to send message data), then Asynchronous Endpoints
(AEP) can be used.

Device I/O management Device drivers run as applications out-
side of the microkernel. To support this, seL4 implements I/O
specific objects that provide access to I/O ports, interrupts,
and I/O address spaces for DMA-based memory access.

3. THE CAPDL LANGUAGE
The main purpose of capDL is to describe the capability distribu-

tion of a system running on top of seL4. The language is intended



to be used in several scenarios and has been designed with these
in mind. Initially two separate goals led to the development of the
language.

The first goal was to have a representation of the system that
was suitable for security analysis, which would involve mapping a
capability distribution to a security model and determining whether
it fulfils security requirements. The second goal was to enable
developers to easily specify the desired capability distribution of
their system and provide it as input to a bootstrapping process,
which would automatically create required objects and configure
and populate the appropriate spaces to reflect the specified structure.

For the first goal what is needed is a format for describing a
snapshot of the capability distribution in a system. To be suitable
for security analysis the snapshot must describe which objects ex-
ist in the system and which capabilities they have access to. For
the second goal the specification must be sufficiently detailed to
allow automated code generation. Therefore it needs to include all
information about capability arguments that such implementations
will need. Some of this information will not be relevant for security
analysis. For instance, for a security analysis it is necessary to know
which frames of physical memory a process in the system can ac-
cess via its virtual memory, but it is not necessary to know under
which virtual address each of these physical addresses is visible
to the process. For a concrete implementation of a bootstrapping
component on the other hand, this latter information is crucial.

CapDL allows specifications to be underspecified, that is, to omit
details of objects or capabilities, or whole objects themselves. A key
use for underspecification is in early design and for communication
of system designs. For example, a specification may omit objects
required for bookkeeping during system initialisation, since these
are not necessary to understand the overall system. CapDL also
allows abstraction of specification, which involves creating a new
specification that contains less details, but has equivalent semantics.
For example, to facilitate security analysis we can often abstract a
complex CSpace graph into a single CNode containing all relevant
capabilities — reducing the complexity of analysing a hierarchy of
CNodes, but maintaining the semantics of the original CSpace.

Besides these, the language has several other requirements. For
developers writing manual specifications it is important that sys-
tem specifications are easy to write. Thus the language provides
shorthand for parts that are tedious to enter manually. For exam-
ple, in capDL, large contiguous blocks of untyped memory objects
and capabilities can be specified as ranges, rather than separate en-
tries for each individual object and capability. Likewise commonly
used objects and capabilities can be given meaningful names so
that specifications can act as documentation and reflect intentions
as well as structure. On the other hand, for specifications that are
generated automatically (for example when dumping the state of the
system), shorthand is not appropriate, so the language also has the
option of representing a capability distribution in the most straight-
forward way, without requiring use of more complex shorthand. Of
course, specifications differing only in the use of shorthand should
be equivalent, and in capDL it is possible to show their equivalence.

A capDL specification has two main sections, the objects section,
specifying all the objects in the system, and the capabilities section,
specifying all the capabilities in the system.

The language model reflects the seL4 kernel object model as de-
scribed in Section 2. All seL4 object types are supported by capDL.
Since some types are architecture specific, each capDL specification
must include an architecture declaration, which subsequently limits
the object types that may be used in it.

Capabilities are typed based on the object type that they reference.
A capDL capability includes a reference to the object that it refers
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Figure 2: An example seL4-based system.

to, and, if applicable, capabilities also include a field for the access
rights that the capability bestows. Besides access rights, some
capability types store extra information relating to how the object is
accessed. For example, Endpoint capabilities also store a badge that
is sent during IPCs performed through that capability. These badges
help to identify participants in the communication occurring over
the endpoint.

There are two main classes of objects in capDL: those that are
containers, which store capabilities, and those that are not. Con-
tainer objects include TCBs, CNodes, Page Directories (PD), and
Page Tables (PT). These objects provide a mapping from slots to
capabilities. By default slots are numbered, but can also be explicitly
named to improve clarity. Some containers, such as TCBs, have a
fixed size, while others can be created with arbitrary sizes.

Untyped Memory objects are also containers, but are different to
the others in that they do not store capabilities, but are conceptual
containers for other kernel objects. When a new object is created
by retyping an existing Untyped Memory object, the new object is
contained in (or covered by) that Untyped Memory object. Since Un-
typed Memory objects can be retyped into smaller Untyped Memory
objects, hierarchies of these objects can exist.

Non-container objects are always of a fixed size and include
Endpoints and Frames. Note that, while Frames can be of different
sizes, these sizes are limited by the architecture, and different sized
Frames are conceptually separate object types.

We illustrate the capDL language using a simple example system
shown in Figure 2. This system consists of three components: a
driver component that has access to a network interface (NIC) device
and two client components that communicate with the driver. Each
component runs as a separate process and has its own protected
address space and individual CSpace.

Figure 3 shows a more detailed view of the objects and capa-
bilities used in the system For clarity we show only the network
driver and one client. We see that each component runs a single
thread and therefore contains a single TCB. Each component has a
single-CNode CSpace and a small virtual address space in which
to run. The components have access to endpoints over which they
communicate, and they both share a small region of virtual memory
which they use to transfer packet data. The network driver com-
ponent also has access to NIC interrupts through an asynchronous
endpoint.

A fragment of the corresponding capDL specification is shown in
Figure 4. This specification starts with the objects section (line 1),
which lists all the objects used in the system. Note that all the objects
belonging to a single component are derived from the same Untyped
object (lines 3, 12, and 13). This is not required, but makes it easy
to destroy and clean up after a process by revoking the capability
to the parent Untyped object and making the children inaccessible.



  

 NIC

 
 FRAME

 FRAME

 

 FRAME

..
.

..

 

CNODE

 CAP
 CAP
 CAP
 CAP
 CAP

 

PD

 FRAME

 FRAME AEP

 AEP

 
TCB

 CAP
 CAP

PT

 

 

CNODE

 CAP
 CAP
 CAP
 CAP

 
TCB

 CAP
 CAP

Network Driver Client

 PDE
 PDE
 PDE
 PDE
 PDE
 PDE

 PDE
 PTE
 PTE
 PTE
 PTE
 PTE  

PD

 PDE
 PDE
 PDE
 PDE
 PDE
 PDE

 PDE

 FRAME

 FRAME

 

 FRAME

..
.

..

PT

 PTE
 PTE
 PTE
 PTE
 PTE

Figure 3: Capabilities involved in the example system.

This is a common pattern in seL4-based systems, and being able to
specify it is an important feature of the language.

The capability distribution is described in the capabilities section
(line 19) where we place capabilities to the appropriate objects in
the various containers. We show the network driver’s TCB (line
21) and CNode (line 26), and the clients’ CNodes (lines 31 and 32).
Note that the CNodes contain capabilities to the shared endpoints,
but that the capabilities have different badges (lines 27, 31, and
32). This distinguishes the two clients from each other when they
communicate with the driver. We also show the structure of the
network driver’s VSpace (lines 33 and 35) consisting of a Page
Directory, a Page Table and various Frames. While not shown here,
shared memory is created by mapping the same Frame objects into
different VSpaces.

While this example has been kept small in order to keep it simple,
it nevertheless highlights some of the key features of the language
that fulfil our requirements. As we’ve mentioned, it allows short-
hand for ease of writing and reading (for example, in lines 6 and 7
we specify multiple objects in a single statement, then refer to these
objects in lines 37 and 38). It also allows underspecification and
abstraction of capability distributions. In lines 3 to 10, for example,
we leave out details of Untyped object hierarchies: an implemen-
tation of this distribution may actually use a hierarchy of Untyped
objects instead of a single Untyped object to create these objects.
This is useful both for system description and for analysis.

We extend this example to show how capDL supports abstraction
for system analysis. The initial specification shows a detailed pro-
cess description consisting of a TCB, a CSpace, and a VSpace (lines
21 to 23). Figure 5 represents an abstract version of this process
consisting of a single TCB that contains all externally accessible ca-
pabilities (the AEPs for communication and interrupts as well as the
Frames shared with the client processes). Such a TCB is not a valid
seL4 object, however, it may be a valid abstraction of a seL4 process
(if refinement can be proved) and can simplify reasoning about such
processes. Given that capDL has formally defined semantics, we in-
tend to explore the automatic generation of such abstractions. Note
that capDL-based system abstraction and analysis is still a work in
progress, and a full discussion of this is, therefore, outside the scope
of this paper.

4. RELATED WORK
Existing operating systems with capability-based access control

such as KeyKOS [4], EROS [12], and Amoeba [8] do not provide
means to explicitly define capability distributions. Capabilities are

1objects -- The object section starts here
2

3DRIVER_ut = ut {
4DRIVER_tcb = tcb
5DRIVER_cspace = cnode (10 bits)
6DRIVER_code [5] = frame (4k)
7DRIVER_data [11] = frame (4k)
8DRIVER_vspace = pd
9DRIVER_pt = pt
10}
11

12CLIENT1_ut = ut {...}
13CLIENT2_ut = ut {...}
14

15DRIVER_aep = aep
16IRQ_aep = aep
17SHARED_frames [2] = frame (4k)
18

19caps -- The capabilities section starts here
20

21DRIVER_tcb = {
22cspace: DRIVER_cspace
23vspace: DRIVER_vspace
24}
25

26DRIVER_cspace = {
271: DRIVER_aep (RW , badge: 0)
282: IRQ_aep (R)
29}
30

31CLIENT1_cspace = { 1: DRIVER_aep (RW, badge: 1) }
32CLIENT2_cspace = { 1: DRIVER_aep (RW, badge: 2) }
33DRIVER_vspace = { 1: DRIVER_pt }
34

35DRIVER_pt = {
360x0: SHARED_frames [] (RW)
370x2000: DRIVER_code [] (R)
380x7000: DRIVER_data [] (RW)
39}

Figure 4: A capDL specification.

1DRIVER_tcb = {
2: DRIVER_aep (RW, badge: 0)
3: IRQ_aep (R)
4: SHARED_frames [] (RW)
5}

Figure 5: An abstraction of a capDL specification.

distributed by the system code at runtime and thus distribution re-
mains implicit in the code. Coyotos [10] introduced CapIDL [11]
which is a CORBA IDL based language for describing IPC interfaces
of the processes in the system. While the CapIDL interfaces are
related to, and represent, capabilities, the language does not provide
a means for explicitly describing which processes provide and use
which interfaces, so the actual capability distribution is never made
explicit. Language-based capability systems such as E [7] provide a
way to describe capabilities in a programming language (typically as
references to objects), however, as with capability-based operating
systems the capability distribution is implicit in the code, and is
never explicitly presented as with capDL. Higher level architecture
description languages such as AADL [3] do provide a means of
describing an overall system architecture including the components
and their interconnections, however, the abstractions that they op-
erate on are at a much higher level than a capability distribution.
Such architecture descriptions could potentially be mapped down to
a capDL system description given appropriate mappings between
the high-level concepts and the capabilities required to implement
them. Various formal models of capability systems exist such as the
original take-grant model [6]. Their purpose is a formal security



analysis or specification. They are lacking the necessary detail for
system implementation and debugging tools. The advantage of our
approach is the direct connection between analysis and implemen-
tation within one language. The textual capDL language presented
here is one way of representing the underlying model. We have also
developed a binary capDL representation that is used as input to
our system bootstrapper. While it would be possible to use other
languages such as XML to represent capDL specifications, we have
not yet investigated these options.

5. STATUS AND FUTURE WORK
The capDL model has formal semantics in the theorem prover

Isabelle/HOL and we have implemented a compiler for the capDL
language. Besides checking syntactic correctness and consistency
of a specification, the compiler also produces a canonical repre-
sentation of the specification, allowing us to check the equivalence
of specifications that use shorthand. The compiler is flexible and
includes different backends, including one that produces a binary
representation of the specification that can be used as input into a
system bootstrapper, and one that produces a graphical representa-
tion of the capability distribution in the dot format. We also have a
debugging tool that produces a capDL dump of a running system’s
capability distribution. We have implemented an automated boot-
strapper that takes as input the binary variant of capDL and produces
an appropriate capability distribution in a running system.

A new feature that we plan to introduce extends the language
to allow us to specify CSpace manipulation operations (such as
creating, moving and destroying capabilities). These operations will
have a formal semantics and will be used for analysis of system
behaviour. We are also working on integrating capDL into our
overall development and security analysis process as described in
Section 1. This will include a mapping of capDL to the current
security model, as well as automated security analysis tools based
on capDL descriptions.

6. CONCLUSIONS
CapDL is a language for explicitly describing the capability dis-

tribution of a seL4-based system. It plays a key role in our effort to
design, build, analyse, and formally verify trustworthy embedded
systems, tying together work being done by system developers and
formal methods practitioners. We have designed capDL to closely
reflect the seL4 model, and to be flexible enough to allow full and
partial specification of a seL4 capability distribution. CapDL has
also been designed to be easy to write by system designers as well
as to be automatically generated and processed by debugging tools.
The underlying capDL model has a formal semantics, which makes
it suitable as a key element in our system analysis and verification
tool chain. We have developed tools to process capDL specifica-
tions, generate running systems from it, dump system state to it, and
have started work on developing security analyses based on capDL
system descriptions.
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ABSTRACT
We report on the formal, machine-checked verification of
the seL4 microkernel from an abstract specification down to
its C implementation. We assume correctness of compiler,
assembly code, hardware, and boot code.

seL4 is a third-generation microkernel of L4 provenance,
comprising 8,700 lines of C and 600 lines of assembler. Its
performance is comparable to other high-performance L4
kernels.

We prove that the implementation always strictly follows
our high-level abstract specification of kernel behaviour. This
encompasses traditional design and implementation safety
properties such as that the kernel will never crash, and it
will never perform an unsafe operation. It also implies much
more: we can predict precisely how the kernel will behave in
every possible situation.

1. INTRODUCTION
Almost every paper on formal verification starts with the

observation that software complexity is increasing, that this
leads to errors, and that this is a problem for mission and
safety critical software. We agree, as do most.

Here, we report on the full formal verification of a critical
system from a high-level model down to very low-level C
code. We do not pretend that this solves all of the software
complexity or error problems. We do think that our approach
will work for similar systems. The main message we wish to
convey is that a formally verified commercial-grade, general-
purpose microkernel now exists, and that formal verification
is possible and feasible on code sizes of about 10,000 lines of C.
It is not cheap; we spent significant effort on the verification,
but it appears cost-effective and more affordable than other
methods that achieve lower degrees of trustworthiness.

To build a truly trustworthy system, one needs to start at
the operating system (OS) and the most critical part of the
OS is its kernel. The kernel is defined as the software that
executes in the privileged mode of the hardware, meaning
that there can be no protection from faults occurring in the
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Figure 1: Call graph of the seL4 microkernel. Ver-
tices represent functions, and edges invocations.

kernel, and every single bug can potentially cause arbitrary
damage. The kernel is a mandatory part of a system’s
trusted computing base (TCB)—the part of the system that
can bypass security [10]. Minimising this TCB is the core
concept behind microkernels, an idea that goes back 40 years.

A microkernel, as opposed to the more traditional mono-
lithic design of contemporary mainstream OS kernels, is
reduced to just the bare minimum of code wrapping hard-
ware mechanisms and needing to run in privileged mode. All
OS services are then implemented as normal programs, run-
ning entirely in (unprivileged) user mode, and therefore can
potentially be excluded from the TCB. Previous implemen-
tations of microkernels resulted in communication overheads
that made them unattractive compared to monolothic ker-
nels. Modern design and implementation techniques have
managed to reduced this overhead to very competitive limits.

A microkernel makes the trustworthiness problem more
tractable. A well-designed high-performance microkernel,
such as the various representatives of the L4 microkernel
family, consists of the order of 10,000 lines of code (10 kloc).
This radical reduction to a bare minimum comes with a price
in complexity. It results in a high degree of interdependency
between different parts of the kernel, as indicated in Fig. 1.
Despite this increased complexity in low-level code, we have
demonstrated that with modern techniques and careful de-



sign, an OS microkernel is entirely within the realm of full
formal verification.

Formal verification of software refers to the application of
mathematical proof techniques to establish properties about
programs. Formal verification can cover not just all lines of
code or all decisions in a program, but all possible behaviours
for all possible inputs. For example, the very simple fragment
of C code if (x < y) z = x/y else z = y/x for x, y, and
z being int tested with x=4,y=2 and x=8,y=16, results in
full code coverage: every line is executed at least once, every
branch of every condition is taken at least once. Yet, there
are still two potential bugs remaining. Of course, any human
tester will find inputs such as x=0,y=-1 and x=-1,y=0 that
expose the bugs, but for bigger programs it is infeasible to
be sure of completeness. This is what formal verification can
achieve.

The approach we use is interactive, machine-assisted and
machine-checked proof. Specifically, we use the theorem
prover Isabelle/HOL [8]. Interactive theorem proving re-
quires human intervention and creativity to construct and
guide the proof. It has the advantage that it is not con-
strained to specific properties or finite, feasible state spaces.
We have proved the functional correctness of the seL4 micro-
kernel, a secure embedded microkernel of the L4 [6] family.
This means we have proved mathematically that the im-
plementation of seL4 always strictly follows our high-level
abstract specification of kernel behaviour. This property is
stronger and more precise than what automated techniques
like model checking, static analysis or kernel implementa-
tions in type-safe languages can achieve. We not only analyse
specific aspects of the kernel, such as safe execution, but also
provide a full specification and proof for the kernel’s precise
behaviour.

In the following, we describe what the implications of the
proof are, how the kernel was designed for verification, what
the verification itself entailed and what its assumptions are,
and finally what effort it cost us.

2. IMPLICATIONS
In a sense, functional correctness is one of the strongest

properties to prove about a system. Once we have proved
functional correctness with respect to a model, we can use
this model to establish further properties instead of having
to reason directly about the code. For instance, we prove
that every system call terminates by looking at the model
instead of the code. However, there are some security-relevant
properties, such as transmission of information via covert
channels, for which the model may not be precise enough.

So our proof does not mean that seL4 is secure for any
purpose. We proved that seL4 is functionally correct. Secure
would first need a formal definition and depends on the
application. Taken seriously, security is a whole-system
question, including the system’s human components.

Even without proving specific security properties on top,
a functional correctness proof already has interesting impli-
cations for security. If the assumptions listed in Sect. 4.5 are
true, then in seL4 there will be:

No code injection attacks. If we always know precisely
what the system does, and if the spec does not explicitly
allow it, then we can never have any foreign code executing
as part of seL4.

No buffer overflows. This is mainly a classic vector for
code injection, but buffer overflows may also inject unwanted

data and influence kernel behaviour that way. We prove that
all array accesses are within bounds and we prove that all
pointer accesses are well typed, even if they go via casts to
void or address arithmetic.

No NULL pointer access. Null pointer bugs can allow
local privilege escalation and execution of arbitrary code in
kernel mode [9]. Absence of NULL pointer dereference is a
direct proof obligation for us for every pointer access.

No ill-typed pointer access. Even though the kernel
code deliberately breaks C type safety for efficiency at some
points, in order to predict that the system behaves according
to specification, we prove that circumventing the type system
is safe at all these points.

No memory leaks and no memory freed that is still in
use. This is not purely a consequence of the proof itself.
Much of the design of seL4 was focussed on explicit memory
management. Users may run out of memory, but the kernel
never will.

No non-termination. We have proved that all kernel
calls terminate. This means the kernel will never suddenly
freeze and not return from a system call. This does not mean
that the whole system will never freeze. It is still possible
to write bad device drivers and bad applications, but set up
correctly, a supervisor process can always stay in control of
the rest of the system.

No arithmetic or other exceptions. The C standard
defines a long list of things that can go wrong and that should
be avoided: shifting machine words by a too-large amount,
dividing by zero, etc. We proved explicitly that none of these
occur, including the absence of errors due to overflows in
integer arithmetic.

No unchecked user arguments. All user input is
checked and validated. If the kernel receives garbage or
malicious arguments it will respond with the specified error
messages, not with crashes. Of course, the kernel will allow
a thread to kill itself if that thread has sufficient capabilities.
It will never allow anything to crash the kernel, though.

Many of these are general security traits that are good to
have for any kind of system. We have also proved a large
number of properties that are specific to seL4. We have
proved them about the kernel design and specification. With
functional correctness, we know they are true about the code
as well. Some examples are:

Aligned objects. Two simple low-level invariants of the
kernel are: all objects are aligned to their size, and no two
objects overlap in memory. This makes comparing memory
regions for objects very simple and efficient.

Wellformed data structures. Lists, doubly linked,
singly linked, with and without additional information, are
a pet topic of formal verification. These data structures also
occur in seL4 and we proved the usual properties: lists are
not circular when they should not be, back pointers point to
the right nodes, insertion, deletion etc, work as expected.

Algorithmic invariants. Many optimisations rely on
certain properties being always true, so specific checks can be
left out or can be replaced by other, more efficient checks. A
simple example is that the distinguished idle thread is always
in thread state idle and therefore can never be blocked or
otherwise waiting for I/O. This can be used to remove checks
in the code paths that deal with the idle thread.

Correct book-keeping. The seL4 kernel has an explicit
user-visible concept of keeping track of memory, who has
access to it, who access was delegated to and what needs to



be done if a privileged process wants to revoke access from
delegates. It is the central mechanism for re-using memory
in seL4. The data structure that backs this concept is corre-
spondingly complex and its implications reach into almost
all aspects of the kernel. For instance, we proved that if a
live object exists anywhere in memory, then there exists an
explicit capability node in this data structure that covers
the object. And if such a capability exists, then it exists
in the proper place in the data structure and has the right
relationship towards parents, siblings and descendants within.
If an object is live (may be mentioned in other objects any-
where in the system) then the object itself together with that
capability must have recorded enough information to reach
all objects that refer to it (directly or indirectly). Together
with a whole host of further invariants, these properties allow
the kernel code to reduce the complex, system-global test
whether a region of memory is mentioned anywhere else in
the system to a quick, local pointer comparison.

We have proved about 80 such invariants on the executable
specification such that they directly transfer to the data
structures used in the C program.

A verification like this is not an absolute guarantee. The
key condition in all this is if the assumptions are true. To
attack any of these properties, this is where one would have
to look. What the proof really does is take 7,500 lines of
C code out of the equation. It reduces possible attacks and
the human analysis necessary to guard against them to the
assumptions and specification. It also is the basis for any
formal analysis of systems running on top of the kernel or
for further high-level analysis of the kernel itself.

3. KERNEL DESIGN FOR VERIFICATION
The challenge in designing a verifiable and usable kernel

lies in reducing complexity to make verification easier while
maintaining high performance.

To achieve these two objectives, we designed and imple-
mented a microkernel from scratch. This kernel, called seL4,
is a third-generation microkernel, based on L4 and influenced
by EROS [11]. It is designed for practical deployment in
embedded systems with high trustworthiness requirements.
One of its innovations is completely explicit memory manage-
ment subject to policies defined at user level, even for kernel
memory. All authority in seL4 is mediated by capabilities [2],
tokens identifying objects and conveying access rights.

We first briefly present the approach we used for a ker-
nel/proof co-design process. Then we highlight the main
design decisions we made to simplify the verification work.

3.1 Kernel/Proof Co-Design Process
One key idea in this project was bridging the gap between

verifiability and performance by using an iterative approach
to kernel design, based around an intermediate target that is
readily accessible to both OS developers and formal methods
practitioners. We used the functional language Haskell to
provide a programming language for OS developers, while
at the same time providing an artifact that can readily be
reasoned about in the theorem proving tool: the design
team wrote increasingly complete prototypes of the kernel in
Haskell, exporting the system call interface via a hardware
simulator to user-level binary code. The formal methods
team imported this prototype into the theorem prover and
used it as an intermediate executable specification. The
approach aims at quickly iterating through design, prototype

implementation and formal model until convergence.
Despite its ability to run real user code, the Haskell ker-

nel remains a prototype, as it does not satisfy our high-
performance requirement. Furthermore, Haskell requires a
significant run-time environment (much bigger than our ker-
nel), and thus violates our requirement of a small TCB. We
therefore translated the Haskell implementation manually
into high-performance C code. An automatic translation
(without proof) would have been possible, but we would
have lost most opportunities to micro-optimise the kernel in
order to meet our performance targets. We do not need to
trust the translations into C and from Haskell into Isabelle —
we formally verify the C code as it is seen by the compiler
gaining an end-to-end theorem between formal specification
and the C semantics.

3.2 Design Decisions

Global Variables and Side Effects. Use of global vari-
ables and functions with side effects is common in operating
systems—mirroring properties of contemporary computer
hardware and OS abstractions. Our verification techniques
can deal routinely with side effects, but implicit state up-
dates and complex use of the same global variable for different
purposes make verification more difficult. This is not sur-
prising: the higher the conceptual complexity, the higher the
verification effort.

The deeper reason is that global variables usually require
stating and proving invariant properties. For example, sched-
uler queues are global data structures frequently implemented
as doubly-linked lists. The corresponding invariant might
state that all back links in the list point to the appropriate
nodes and that all elements point to thread control blocks
and that all active threads are in one of the scheduler queues.

Invariants are expensive because they need to be proved
not only locally for the functions that directly manipulate the
scheduler queue, but for the whole kernel—we have to show
that no other pointer manipulation in the kernel destroys
the list or its properties. This proof can be easy or hard,
depending on how modularly the global variable is used.

Dealing with global variables was simplified by deriving
the kernel implementation from Haskell, where side effects
are explicit and drawn to the design team’s attention.

Kernel Memory Management. The seL4 kernel uses a
model of memory allocation that exports control of the in-
kernel allocation to appropriately authorised applications.
While this model is mostly motivated by the need for precise
guarantees of memory consumption, it also benefits verifica-
tion. The model pushes the policy for allocation outside the
kernel, which means we only need to prove that the mecha-
nism works, not that the user-level policy makes sense. The
mechanism works if it keeps kernel code and data structures
safe from user access, if the virtual memory subsystem is
fully controlled by the kernel interface via capabilities, and
if it provides the necessary functionality for user level to
manage its own virtual memory policies.

Obviously, moving policy into userland does not change the
fact that memory-allocation is part of the trusted computing
base. It does mean, however, that memory-allocation can be
verified separately, and can rely on verified kernel properties.

The memory-management model gives free memory to the
user-level manager in the form of regions tagged as untyped.



The memory manager can split untyped regions and re-type
them into one of several kernel object types (one of them,
frame, is for user-accessible memory); such operations create
new capabilities. Object destruction converts a region back
to untyped (and invalidates derived capabilities).

Before re-using a block of memory, all references to this
memory must be invalidated. This involves either finding
all outstanding capabilities to the object, or returning the
object to the memory pool only when the last capability
is deleted. Our kernel uses both approaches. In the first
approach, a so-called capability derivation tree is used to find
and invalidate all capabilities referring to a memory region.
In the second approach, the capability derivation tree is used
to ensure, with a check that is local in scope, that there
are no system-wide dangling references. This is possible
because all other kernel objects have further invariants on
their own internal references that relate back to the existence
of capabilities in this derivation tree.

Similar book-keeping would be necessary for a traditional
malloc/free model in the kernel. The difference is that the
complicated free case in our model is concentrated in one
place, whereas otherwise it would be repeated numerous
times over the code.

Concurrency and non-determinism. Concurrency is the
execution of computation in parallel (in the case of multiple
hardware processors), or by non-deterministic interleaving
via a concurrency abstraction like threads. Reasoning about
concurrent programs is hard, much harder than reasoning
about sequential programs. For the time being, we limited
the verification to a single-processor version of seL4.

In a uniprocessor kernel, concurrency can result from three
sources: yielding of the processor from one thread to an-
other, (synchronous) exceptions and (asynchronous) inter-
rupts. Yielding can be synchronous, by an explicit handover,
such as when blocking on a lock, or asynchronous, by pre-
emption (but in a uniprocessor kernel the latter can only
happen as the result of an interrupt).

We limit the effect of all three by a kernel design which
explicitly minimises concurrency.

Exceptions are completely avoided, by ensuring that they
never occur. For instance, we avoid virtual-memory excep-
tions by allocating all kernel data structures in a region of
virtual memory which is always guaranteed to be mapped to
physical memory. System-call arguments are either passed in
registers or through pre-registered physical memory frames.

The complexity of synchronous yield we avoid by using an
event-based kernel execution model, with a single kernel stack,
and a mostly atomic application programming interface. This
is aided by the traditional L4 model of system calls which
are primitive and mostly short-running.

We minimise the effect of interrupts (and hence preemp-
tions) by disabling interrupts during kernel execution. Again,
this is aided by the L4 model of short system calls.

However, not all kernel operations can be guaranteed to
be short; object destruction especially can require almost
arbitrary execution time, so not allowing any interrupt pro-
cessing during a system call would rule out the use of the
kernel for real-time applications, undermining the goal of
real-world deployability.

We ensure bounded interrupt latencies by the standard
approach of introducing a few, carefully-placed, interrupt
points. On detection of a pending interrupt, the kernel explic-

Abstract Specification

Executable Specification

High-Performance C Implementation

Haskell Prototype

Isabelle/HOL

Automatic 
Translation

Refinement Proof

Refinement Proof

Figure 2: The refinement layers in the verification
of seL4

itly returns through the function call stack to the kernel/user
boundary and responds to the interrupt. It then restarts
the original operation, including re-establishing all the pre-
conditions for execution. As a result, we completely avoid
concurrent execution in the kernel.

I/O. Interrupts are used by device drivers to affect I/O. L4
kernels traditionally implement device drivers as user-level
programs, and seL4 is no different. Device interrupts are
converted into messages to the user-level driver.

This approach removes a large amount of complexity from
the kernel implementation (and the proof). The only excep-
tion is an in-kernel timer driver which generates timer ticks
for scheduling, which is straightforward to deal with.

4. VERIFICATION OF SEL4
This section gives an overview of the formal verification of

seL4 in the theorem prover Isabelle/HOL [8]. The property
we are proving is functional correctness. Formally, we are
showing refinement : A refinement proof establishes a corre-
spondence between a high-level (abstract) and a low-level
(concrete, or refined) representation of a system.

The correspondence established by the refinement proof
ensures that all Hoare logic properties of the abstract model
also hold for the refined model. This means that if a secu-
rity property is proved in Hoare logic about the abstract
model (not all security properties can be), our refinement
guarantees that the same property holds for the kernel source
code. In this paper, we concentrate on the general functional
correctness property. We have also modelled and proved the
security of seL4’s access-control system in Isabelle/HOL on
a high level [3].

Fig. 2 shows the specification layers used in the verification
of seL4; they are related by formal proof. In the following
sections we explain each layer in turn.

4.1 Abstract specification
The abstract level describes what the system does without

saying how it is done. For all user-visible kernel operations it
describes the functional behaviour that is expected from the
system. All implementations that refine this specification
will be binary compatible.

We precisely describe argument formats, encodings and
error reporting, so, for instance, some of the C-level size
restrictions become visible on this level. We model finite
machine words, memory and typed pointers explicitly. Oth-



schedule ≡ do

threads ← all_active_tcbs;

thread ← select threads;

switch_to_thread thread

od OR switch_to_idle_thread

Figure 3: Isabelle/HOL code for scheduler at ab-
stract level.

erwise, the data structures used in this abstract specification
are high-level — essentially sets, lists, trees, functions and
records. We make use of non-determinism in order to leave
implementation choices to lower levels: If there are multiple
correct results for an operation, this abstract layer would
return all of them and make clear that there is a choice. The
implementation is free to pick any one of them.

An example of this is scheduling. No scheduling policy is
defined at the abstract level. Instead, the scheduler is mod-
elled as a function picking any runnable thread that is active
in the system or the idle thread. The Isabelle/HOL code
for this is shown in Fig. 3. The function all_active_tcbs

returns the abstract set of all runnable threads in the system.
Its implementation (not shown) is an abstract logical predi-
cate over the whole system. The select statement picks any
element of the set. The OR makes a non-deterministic choice
between the first block and switch_to_idle_thread. The
executable specification makes this choice more specific.

4.2 Executable specification
The purpose of the executable specification is to fill in the

details left open at the abstract level and to specify how the
kernel works (as opposed to what it does). While trying to
avoid the messy specifics of how data structures and code
are optimised in C, we reflect the fundamental restrictions
in size and code structure that we expect from the hardware
and the C implementation. For instance, we take care not
to use more than 64 bits to represent capabilities, exploiting
known alignment of pointers. We do not specify in which
way this limited information is laid out in C.

The executable specification is deterministic; the only non-
determinism left is that of the underlying machine. All data
structures are now explicit data types, records and lists with
straightforward, efficient implementations in C. For example
the capability derivation tree of seL4, modelled as a tree on
the abstract level, is now modelled as a doubly linked list
with limited level information. It is manipulated explicitly
with pointer-update operations.

Fig. 4 shows part of the scheduler specification at this
level. The additional complexity becomes apparent in the
chooseThread function that is no longer merely a simple pred-
icate, but rather an explicit search backed by data structures
for priority queues. The specification fixes the behaviour
of the scheduler to a simple priority-based round-robin al-
gorithm. It mentions that threads have time slices and it
clarifies when the idle thread will be scheduled. Note that
priority queues duplicate information that is already available
(in the form of thread states), in order to make it available
efficiently. They make it easy to find a runnable thread of
high priority. The optimisation will require us to prove that
the duplicated information is consistent.

We have proved that the executable specification correctly
implements the abstract specification. Because of its extreme
level of detail, this proof alone already provides stronger

schedule = do
action <- getSchedulerAction
case action of
ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread’ (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread’ prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread’’ q

chooseThread’’ thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Figure 4: Haskell code for schedule.

design assurance than has been shown for any other general-
purpose OS kernel.

4.3 C implementation
The most detailed layer in our verification is the C imple-

mentation. The translation from C into Isabelle is correctness-
critical and we take great care to model the semantics of
our C subset precisely and foundationally. Precisely means
that we treat C semantics, types, and memory model as the
C99 standard [4] prescribes, for instance with architecture-
dependent word size, padding of structs, type-unsafe casting
of pointers, and arithmetic on addresses. As kernel program-
mers do, we make assumptions about the compiler (GCC)
that go beyond the standard, and about the architecture
used (ARMv6). These are explicit in the model, and we can
therefore detect violations. Foundationally means that we
do not just axiomatise the behaviour of C on a high level,
but we derive it from first principles as far as possible. For
example, in our model of C, memory is a primitive function
from addresses to bytes without type information or restric-
tions. On top of that, we specify how types like unsigned

int are encoded, how structures are laid out, and how im-
plicit and explicit type casts behave. We managed to lift this
low-level memory model to a high-level calculus that allows
efficient, abstract reasoning on the type-safe fragment of the
kernel. We generate proof obligations assuring the safety of
each pointer access and write. They state that the pointer
in question must be non-null and of the correct alignment.
They are typically easy to discharge. We generate similar
obligations for all restrictions the C99 standard demands.

We treat a very large, pragmatic subset of C99 in the veri-
fication. It is a compromise between verification convenience
and the hoops the kernel programmers were willing to jump
through in writing their source. The following paragraphs
describe what is not in this subset.

We do not allow the address-of operator & on local vari-
ables, because, for better automation, we make the assump-
tion that local variables are separate from the heap. This
could be violated if their address was available to pass on.
It is the most far-reaching restriction we implement, because
it is common in C to use local variable references for re-
turn parameters to avoid returning large types on the stack.
We achieved compliance with this requirement by avoiding



void setPriority(tcb_t *tptr, prio_t prio) {
prio_t oldprio;
if(thread_state_get_tcbQueued(tptr->tcbState)) {
oldprio = tptr->tcbPriority;
ksReadyQueues[oldprio] =
tcbSchedDequeue(tptr, ksReadyQueues[oldprio]);

if(isRunnable(tptr)) {
ksReadyQueues[prio] =
tcbSchedEnqueue(tptr, ksReadyQueues[prio]);

}
else {
thread_state_ptr_set_tcbQueued(&tptr->tcbState,

false);
}

}
tptr->tcbPriority = prio;

}

Figure 5: C code for part of the scheduler.

reference parameters as much as possible, and where they
were needed, used pointers to global variables (which are not
restricted).

One feature of C that is problematic for verification (and
programmers) is the unspecified order of evaluation in ex-
pressions with side effects. To deal with this feature soundly,
we limit how side effects can occur in expressions. If more
than one function call occurs within an expression or the
expression otherwise accesses global state, a proof obligation
is generated to show that these functions are side-effect free.
This proof obligation is discharged automatically.

We do not allow function calls through function pointers.
(We do allow handing the address of a function to assembler
code, e.g. for installing exception vector tables.) We also do
not allow goto statements, or switch statements with fall-
through cases. We support C99 compound literals, making it
convenient to return structs from functions, and reducing the
need for reference parameters. We do not allow compound
literals to be lvalues. Some of these restrictions could be
lifted easily, but the features were not required in seL4.

We did not use unions directly in seL4 and therefore do
not support them in the verification (although that would
be possible). Since the C implementation was derived from a
functional program, all unions in seL4 are tagged, and many
structs are packed bitfields. Like other kernel implementors,
we do not trust GCC to compile and optimise bitfields pre-
dictably for kernel code. Instead, we wrote a small tool that
takes a specification and generates C code with the neces-
sary shifting and masking for such bitfields. The tool helps
us to easily map structures to page table entries or other
hardware-defined memory layouts. The generated code can
be inlined and, after compilation on ARM, the result is more
compact and faster than GCC’s native bitfields. The tool not
only generates the C code, it also automatically generates
Isabelle/HOL specifications and proofs of correctness.

Fig. 5 shows part of the implementation of the schedul-
ing functionality described in the previous sections. It is
standard C99 code with pointers, arrays and structs. The
thread_state functions used in Fig. 5 are examples of gen-
erated bitfield accessors.

4.4 The proof
This section describes the main theorem we have shown

and how its proof was constructed.
As mentioned, the main property we are interested in is

functional correctness, which we prove by showing formal
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Figure 6: Forward Simulation.

refinement. We have formalised this property for general
state machines in Isabelle/HOL, and we instantiate each
of the specifications in the previous sections into this state-
machine framework.

We have also proved the well-known reduction of refinement
to forward simulation, illustrated in Fig. 6 where the solid
arrows mean universal quantification and the dashed arrows
existential: To show that a concrete state machineM2 refines
an abstract one M1, it is sufficient to show that for each
transition in M2 that may lead from an initial state s to a
set of states s′, there exists a corresponding transition on the
abstract side from an abstract state σ to a set σ′ (they are
sets because the machines may be non-deterministic). The
transitions correspond if there exists a relation R between
the states s and σ such that for each concrete state in s′

there is an abstract one in σ′ that makes R hold between
them again. This has to be shown for each transition with
the same overall relation R. For externally visible state, we
require R to be equality. For each refinement layer in Fig. 2,
we have strengthened and varied this proof technique slightly,
but the general idea remains the same.

We now describe the instantiation of this framework to
the seL4 kernel. We have the following types of transition in
our state machines: kernel transitions, user transitions, user
events, idle transitions, and idle events. Kernel transitions
are those that are described by each of the specification layers
in increasing amount of detail. User transitions are specified
as non-deterministically changing arbitrary user-accessible
parts of the state space. User events model kernel entry
(trap instructions, faults, interrupts). Idle transitions model
the behaviour of the idle thread. Finally, idle events are
interrupts occurring during idle time; other interrupts that
occur during kernel execution are modelled explicitly and
separately in each layer of Fig. 2.

The model of the machine and the model of user programs
remain the same across all refinement layers; only the details
of kernel behaviour and kernel data structures change. The
fully non-deterministic model of the user means that our
proof includes all possible user behaviours, be they benign,
buggy, or malicious.

Let machine MA denote the system framework instan-
tiated with the abstract specification of Sect. 4.1, let ma-
chine ME represent the framework instantiated with the
executable specification of Sect. 4.2, and let machine MC

stand for the framework instantiated with the C program
read into the theorem prover. Then we prove the following



two, very simple-looking theorems:

Theorem 1. ME refines MA.

Theorem 2. MC refines ME.

Therefore, because refinement is transitive, we have

Theorem 3. MC refines MA.

4.5 Assumptions
Formal verification can never be absolute; it always must

make fundamental assumptions. The assumptions we make
are correctness of the C compiler, the assembly code,
the hardware, and kernel initialisation. We explain
each of them in more detail below.

The initialisation code takes up about 1.2 kloc of the
kernel. The theorems in Sect. 4.4 only state correspondence
between entry and exit points in each specification layer for
a running kernel.

Assuming correctness of the C compiler means that we
assume GCC correctly translates the seL4 source code in our
C subset according to the ISO/IEC C99 standard [4], that the
formal model of our C subset accurately reflects this standard
and that the model makes the correct architecture-specific
assumptions for the ARMv6 architecture on the Freescale
i.MX31 platform.

The assumptions on hardware and assembly mean that
we do not prove correctness of the register save/restore and
the potential context switch on kernel exit. Cache consistency,
cache colouring, and TLB flushing requirements are part of
the assembly-implemented machine interface. These machine
interface functions are called from C, and we assume they do
not have any effect on the memory state of the C program.
This is only true if they are used correctly.

The virtual memory (VM) subsystem of seL4 is not as-
sumed correct, but is treated differently from other parts
of the proof. For our C semantics, we assume a traditional,
flat view of in-kernel memory that is kept consistent by the
kernel’s VM subsystem. We make this consistency argument
only informally; our model does not oblige us to prove it.
We do however substantiate the model and informal argu-
ment by manually stated, machine-checked properties and
invariants. This means we explicitly treat in-kernel virtual
memory in the proof, but this treatment is different from
the high standards in the rest of our proof where we reason
from first principles and the proof forces us to be complete.

This is the set of assumptions we picked. If they are
too strong for a particular purpose, many of them can be
eliminated combined with other research. For instance, we
have verified the executable design of the boot code in an
earlier design version. For context switching, Ni et al. [7]
report verification success, and the Verisoft project [1] shows
how to verify assembly code and hardware interaction. Leroy
verified an optimising C compiler [5] for the PowerPC and
ARM architectures.

An often-raised concern is the question What if there is
a mistake in the proof? The proof is machine-checked by
Isabelle/HOL. So what if there is a bug in Isabelle/HOL?
The proof checking component of Isabelle is small and can be
isolated from the rest of the prover. It is extremely unlikely
that there is a bug in this part of the system that applies
in a correctness-critical way to our proof. If there was rea-
son for concern, a completely independent proof checker

Haskell/C Isabelle Invar- Proof
pm kloc kloc iants py klop

abst. 4 — 4.9 ∼ 75
exec. 24 5.7 13 ∼ 80

8 110

impl. 2 8.7 15 0
3 55

Table 1: Code and proof statistics.

could be written in a few hundred lines of code. Provers
like Isabelle/HOL can achieve a degree of proof trustworthi-
ness that far surpasses the confidence levels we rely on in
engineering or mathematics for our daily survival.

5. EXPERIENCE AND LESSONS LEARNT

5.1 Verification effort
The project was conducted in three phases. First an initial

kernel with limited functionality (no interrupts, single ad-
dress space and generic linear page table) was designed and
implemented in Haskell, while the verification team mostly
worked on the verification framework and generic proof li-
braries. In a second phase, the verification team developed
the abstract spec and performed the first refinement while
the development team completed the design, Haskell pro-
totype and C implementation. The third phase consisted
of extending the first refinement step to the full kernel and
performing the second refinement. The overall size of the
proof, including framework, libraries, and generated proofs
(not shown in the table) is 200,000 lines of Isabelle script.

Table 1 gives a breakdown for the effort and size of each
of the layers and proofs. About 30 person months (pm)
went into the abstract specification, Haskell prototype and
C implementation (over all project phases), including design,
documentation, coding, and testing.

This compares well with other efforts for developing a new
microkernel from scratch: The Karlsruhe team reports that,
on the back of their experience from building the earlier
Hazelnut kernel, the development of the Pistachio kernel
cost about 6 py. SLOCCount with the “embedded” profile
estimates the total cost of seL4 at 4 py. Hence, there is
strong evidence that the detour via Haskell did not increase
the cost, but was in fact a significant net cost saver.

The cost of the proof is higher, in total about 20 person
years (py). This includes significant research and about 9 py
invested in formal language frameworks, proof tools, proof
automation, theorem prover extensions and libraries. The
total effort for the seL4-specific proof was 11 py.

We expect that re-doing a similar verification for a new
kernel, using the same overall methodology, would reduce
this figure to 6 py, for a total (kernel plus proof) of 8 py. This
is only twice the SLOCCount estimate for a traditionally-
engineered system with no assurance.

The breakdown in Table 1 of effort between the two refine-
ment stages is illuminating: almost 3:1. This is a reflection
of the low-level nature of our Haskell prototype, which cap-
tures most of the properties of the final product. This is
also reflected in the proof size—the first proof step contained
most of the deep semantic content. 80 % of the effort in
the first refinement went into establishing invariants, only
20 % into the actual correspondence proof. We consider this
asymmetry a significant benefit, as the executable spec is
more convenient and efficient to reason about than C.



The first refinement step led to some 300 changes in the
abstract spec and 200 in the executable spec. About 50 % of
these changes relate to bugs in the associated algorithms or
design. Examples are missing checks on user supplied input,
subtle side effects in the middle of an operation breaking
global invariants, or over-strong assumptions about what is
true during execution. The rest of the changes were intro-
duced for verification convenience. The ability to change and
rearrange code in discussion with the design team was an
important factor in the verification team’s productivity and
was essential to complete the verification on time.

The second refinement stage from executable spec to C
uncovered 160 bugs, 16 of which were also found during
testing, early application and static analysis. The bugs
discovered in this stage were mainly typos, misreading the
specification, or failing to update all relevant code parts for
specification changes. Even though their cause was often
simple, understandable human error, their effect in many
cases was sufficient to crash the kernel or create security
vulnerabilities. There were no deeper, algorithmic bugs in
the C level, because the C code was written according to a
very precise, low-level specification.

5.2 The cost of change
One issue of verification is the cost of proof maintenance:

how much does it cost to re-verify after changes are made
to the kernel? This obviously depends on the nature of the
change. We are not able to precisely quantify such costs, but
our iterative verification approach has provided us with some
relevant experience.

The best case is a local, low-level code change, typically an
optimisation that does not affect the observable behaviour.
We made such changes repeatedly, and found that the effort
for re-verification was always low and roughly proportional
to the size of the change.

Adding new, independent features, which do not interact in
a complex way with existing features, usually has a moderate
impact. For example, adding a new system call to the seL4
API that atomically batches a specific, short sequence of
existing system calls took one day to design and implement.
Adjusting the proof took less than 1 person week.

Adding new, large, cross-cutting features, such as adding
a complex new data structure to the kernel supporting new
API calls that interact with other parts of the kernel, is
significantly more expensive. We experienced such a case
when progressing from the first to the final implementation,
adding interrupts, ARM page tables and address spaces.
This change cost several pms to design and implement, and
resulted in 1.5–2 py to re-verify. It modified about 12 % of
existing Haskell code, added another 37 %, and re-verification
cost about 32 % of the time previously invested in verifica-
tion. The new features required only minor adjustments
of existing invariants, but lead to a considerable number of
new invariants for the new code. These invariants had to be
preserved over the whole kernel, not just the new features.

Unsurprisingly, fundamental changes to existing features
are bad news. We experienced one such change when we
added reply capabilities for efficient RPC as an API optimi-
sation after the first refinement was completed. Even though
the code size of this change was small (less than 5 % of the
total code base), it violated key invariants about the way ca-
pabilities were used in the system until then and the amount
of conceptual cross-cutting was huge. It took about 1 py or

17 % of the original proof effort to re-verify.
There is one class of otherwise frequent code changes that

does not occur after the kernel has been verified: implemen-
tation bug fixes.

6. CONCLUSIONS
We have presented our experience in formally verifying

seL4. We have shown that full, rigorous, formal verification
is practically achievable for OS microkernels.

The requirements of verification force the designers to
think of the simplest and cleanest way of achieving their
goals. We found repeatedly that this leads to overall better
design, for instance in the decisions aimed at simplifying
concurrency-related verification issues.

Our future research agenda includes verification of the
assembly parts of the kernel, a multi-core version of the
kernel, as well as formal verification of overall system security
and safety properties, including application components. The
latter now becomes much more meaningful than previously
possible: application proofs can rely on the abstract, formal
kernel specification that seL4 is proven to implement.
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